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INTRODUCTION

The radar cross section of jet engine configurations on modern
aircraft is a most perverse problem analytically. An ability to predict
the radar cross section of loaded cavity structures, even when such
structures are only very crude models of the actual engine, has been
seriously lacking., At the same time it is well known that above a
certain spectral range the engine configuration largely controls the
radar cross section of the aircraft over a large span of nose and often
stern aspects. Recent]y, the radar signal modulation produced by the
engines has become df important analytical concern. The research

reported in this document on the radar cross section of a loaded cavity

structure is felt therefore to answer significant needs of the Air

Force, . —

\\\\‘*\-Thisﬁtechicé?‘report is separated into two parts. Part I, “Ray
Analysis of EM Backscatter from a Cavity Configuration‘;tontains the
major thrust of our research and basically details an asymptotic
frequency domain analysis of various loaded cavity structures. Part Ig,

,ﬁlzr“tanonical Response Waveforms of Finite and Open Circular Waveguides” is
essentially a time domain analysis of the same types of prohlems.f Both
Part 1 and Part 11 are self contained.\;%ge“parts are inferrélated

... however- in the sense that results from one are used in the other, For




S

S

example, Part Il reproduces a portion of the exact Wiener-Hopf
computations for an open circular waveguide. These results were used to
verify a portion of the theory in Part I. Conversely, frequency
computations from the analysis in Part I are used in Part Il as part of
a Fourier synthesis procedure to obtain canonical response waveforms.

It is suggested that the reader peruse Part I and Part II in €€§t
order. Only when the real complexity of the problem is understood éan
the approximations used in Part Il be appreciated. Both Part I and rart
I1 have separate preliminary discussions and separate summaries. A f ¢

final section of this report summarizes our main accomplishments and'

makes recommendations for future research.
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PART I

RAY ANALYSIS OF EM BACKSCATTER
FROM A CAVITY CONFIGURATION

Ching-Chao Huang
Prabhakar H., Pathak
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SECTION 1
PRELIMINARY OISCUSSION FOR PART 1

The jet inlet structure is a significant scatterer that must be
taken into account when computing the radar cross section (RCS) of
modern aircraft. While this is in general a difficult problem, it is
strongly felt that this difficulty can he substantially reduced if one
procecds from relatively simple to more complex inlet geometries, and
develops a thorough understanding of the basic scattering mechanisms
involved in such geometries, These analyses can then be modified or
extended so that a realistic analytical model of the actual inlet (or
intake) should be obtainable., With the above view in mind, the low
frequency RCS of a simplified jet inlet configuration is analyzed in
this report. The method of analysis employed here is based on the
Uniform Geometrical Theory of Diffraction (UTD) [1] ray technique and
its modifications which are required within caustic regions, together
with the self-consistent multiple scattering method (MSM), The modifi-
cations of the UTD at caustics which are incorporated in this work
involve the use of equivalent currents and aperture integrals; it is
noted that the aperture integrals referred to here are more closely
associated with the Physical Theory of Diffraction (PTD) [24]. However,
the PID in general can be shown to be related to the Geometrical Theory

of Diffraction (GTD) [21] and its uniform version (UTD) [1] if one
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Figure 1. A simplified jet intake model,
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evaluates the integrals of PTD asymptotically in the high frequency
limit. Due to the latter relationship between GTD (UTD) and PTD, it is
convenient to think of the use of equivalent currents and aperture
integrals simply as modifications of the UTD at caustics, rather than as
being a part of the PTD.

The simplified jet inlet model chosen here consists of a
semi-infinite, perfectly-conducting hollow circular pipe (or wavequide)
with a planar pericdic blade structure placed within it at a distance,
!, from the open end of the pipe as illustrated in Figure 1. The axis "
of the blade structure coincides with the axis of the circular pipe.
The inlet model is illuminated by an external electromagnetic plane wave
as shown in Figure 1, and the medium surrounding the inlet is assumed to
be free space. In the present case, the blade geometry in Figure 1 only
crudely models either the actual fan in the case of a turbo-fan type jet
engine, or the first compressor ring of blades in a conventional
(non-turbo-fan) jet engine. A second configuration which is also
considered in this work is one which contains a combination of two
planar, non-identical sets of blades extremely close together to
simulate a stator-rotor combination in which the planar stator vanes are
fixed and the planar rotor blades are allowed to turn relative to the
fixed stator, The stator-rotor jet inlet model is illustrated in Figure
2. An analysis of the RCS for the problem in Figure 2 yields an .
estimate of the RCS modulation resulting from the motion of the rotor

blades relative to the stator vanes, It is noted that the stator-rotor
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{(a) SIDE VIEW

: WIDTH OF
STATOR VANE
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(c) ENLARGED FRONT VIEW

Figure 2. Geometry of a simple jet inlet-model with a planar
stator-rotor combination within, Stator and rotor
lie in the same plane for convenience of analysis.




Figure 3. Backscattering from a finite hollow pipe which is open
at z=0 and closed at 2=-L,

20>

9>
"
2>
X
D>

Figure 4, Backscattering from a finite hollow pipe with both
ends open.




blade configufation of Figure 2 serves to improve the basic model of
Figure 1 because a set of stator vanes is generally present immediately
behind the fan in the case of a turbo-fan type jet engine, and they are
also generally present immediately in front of the first compressor ring
of blades in a conventional (or non-turbo fan) jet engine. Additional
problems which are also considered in this work deal with the RCS

analysis of finite length hollow circular cylinders open at the front

end, but either closed (shorted), or open at the back end as shown in
Figures 3 and 4, respectively. The solutions to the latter problems are
of interest in that they allow a useful comparison of the effect on the
RCS resulting from the scattering by the blade structure in the
configurations of Figures 1 and 2, as opposed to the shart and open
terminations of Figu;es 3 and 4. In the present work, the RCS is of
interest for the range of angles 6 which satisfy & < n/2; the angle 0 is
illustrated in Figures 1-4.

Some of the earlier published work available in the open literature
on the types of problems considered in this report is briefly reviewed.
The electromagnetic (EM) radiation from open-ended, semi-infinite
circular and rectangular waveguides was treated by Chu [2] via a
Kirchhoff approximation for the fields in the aperture at the open end,
A formally exact solution for the problems of radiation and/or
scattering from an open-ended, semi-infinite, hollow circular pipe was

obtained via the Wiener-Hopf procedure by Levine and Schwinger [3],

Jones [4], and Noble [5] for the acoustic case, and by Pearson [67 for




the perfectiy-conducting EM case. Later Weinstein [7] treated in great
detail both, the acoustic, and EM problems of radiation and scattering
by an open-ended semi-infinite hollow circular pipe via the Weiner-Hopf
technique; furthermore, Weinstein discussed the limitations of the
Kirchhoff method for solving these problems. Subsequently Bowman [81,
Lee et al [9], Mittra et al [10], Chuang et al [11], and Johnson and
Moffatt [12] essentially dealt with improving the numerical efficiency
and accuracy of the asymptotic high frequency approximation to the
Wiener-Hopf factors given by Weinstein in his Wiener-Hopf solution for
the EM radiation and scattering from an open-ended circular waveguide
configuration. Witt and Price [13] analyzed the EM scattering by finite
Tength perfectly-conducting hollow circular and rectangular pipes using
a Kirchhoff type approximation. However, their procedure appears to be
incorrect because the dominant term in their solution which pertains to
the scattering by just the open front end exhibits the wrong frequency
dependence for the circular pipe geometry when compared with an accurate
asymptotic approximation of the Wiener-Hopf solution for the same
problem [12]. Moll and Seecamp [14] analyzed the RCS of an inlet
geometry modeled by an open-ended, semi-infinite hollow
perfectly-conducting circular pipe with a planar blade structure inside;
their blade model is somewhat similar, but not identical to the one
chosen in the present work (as illustrated in Figures 1 and 2).

However, Moll and Seecamp [14] employ the procedure of Witt and Price
[13] which appears to be incorrect as mentioned earlier; furthermore,

they inciude additional approximations (e.g., they neglect all TM modes

10




inside the duct) which appears to lead to additional errors., Kao [151
presents a numerical type solution for the scattering by finite length
cylinders; however, his work is restricted to hroadside incidence on the
cylinder. Finally, it may be remarked that Mittra et al [1n] aiso
consider the effect on the RCS resulting from a uniform planar
termination inside the semi-infinite hollow circular pipe in which the
planar termination is characterized by a surface impedance type boundary
condition. Their analysis of this problem is based on combining their
Wiener-Hopf solution with the Generalized Scattering Matrix Technique
(GSMT). It is noted that the MSM based procedure employed in the
present work is essentially the same as the GSMT [16,17]. Both, the
GSMT and the self-consistent MSM allow one to account for the multiple
wave interactions beiween the open end of the circular pipe and the
termination (or discontinuity) placed within the circular pipe. A ray
analysis of the EM radiation from an open ended circular waveguide has
been presented by Narasimhan [18]; whereas, Felsen and Yee [19] have
performed a ray analysis of the acoustic modal refiection coefficient
associated with an open ended rigid circular pipe which is excited from
within. The ray analyses of Narasimhan [18], and Felsen and Yee [19]
will be briefly reviewed in Section 3, wherein their work will also be
compared and contrasted with the present UTD ray analysis and it's
modifications for the EM radiation and reflection from an open-ended
circular waveguide. The latter analysis is necessary in the present
development of the explicit expressions for the RCS of the geometries in

Fiqures 1-4,

11
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In the present work, a ray analysis based on the Uniform
Geometrical Theory of Niffraction {UTD) and its modifications is
comhined with the multiple scattering method (MSM) to arrive at a very
efficient solution for evaluating the RCS of the inlet configurations in
Figqures 1-4, This method of analysis will simply be abbreviated as
UTD-MSM, for convenience. Basically, the MSM allows one to
systematically take into account all interactions between the open front
end of the pipe and the termination (or discontinuity) at the back end
located a distance L from the open end as shown in Figures 1-4, 1In the
MS¥, the wave interactions are described by “"scattering matrices”
pertaining to the canonical scattering events which occur at the front
(Z=0) and back (Z=-L)}. Tnese multiple interactions can be suymmed in a
¢losed form via a self-consistent procedure. The elements of the
scattering matrices in the MSM analysis are obtained here by using the
UTD and its appropriate modifications which are required within caustic
regions, and witihin the confluence of caustic and ray optical shadow
poundary transition regions, It is important to note that the
convantional waveguide modal fields in the pipe region need to be
converted intn a set of equivalent rays near the edge (or rim) of the
open end in order to systematically employ the UTD ray technique for
obtaining the elenents of the scattering matrices. The UTD ray analysis
provides simpie and accurate expressions for the elements of the
scattering matrices, and hence for the scattered and diffracted fields.
The UTD analysis also provides a physical description for the scattering

processes in terms of rays,

12




< e s < emam———

These UTD based scattering matrix elements for the EM radiation and
scattering by an open-ended semi-infinite hollow circular pipe are found
to agree extremely well with those obtained from the exact Wiener-Hopf
solution for the same problem; the Wiener-Hopf solution is available in
the open literature {7,9,10,12] as mentioned earlier. This agreement
holds up even for the dominant mode regime in the circular pipe. A
distinct advantage of the UTD solution, hesides being physically
appealing and accurate, is that it is far less complicated to use than
the Wiener-Hopf solution. Furthermore, the present UTD analysis can be
extended to jet intake or inlet shapes other than those which can be
analyzed by the Wiener-Hopf method. Nevertheless, the Wiener-Hopf
solution for the hollow, semi-infinite circular pipe is very useful in
that it is a formally exact solution, and it therefore provides an
important check on the approximate UTD ray solution.

A general description of the self-consistent MSM formulation of the
solutions to the RCS problems shown in Figures 1-4 are described in
Section 2. The elements of the various scattering matrices required in
the MSM are obtained via the UTD and its appropriate modifications in
Section 3. Several interesting numerical results based on the UTD-MSM
solutions for the problems in Figures 1-4 are then presented and
discussed in Section 4. Here, the UTD-MSM solution therefore implies
that the backscattered field or the RCS of any of the problems in
Figures 1-4 is obtained via the self-consistent MSM based formulation
which contains scattering matrices whose elements are obtained via the

UTD ray technique and its appropriate modifications., [n addition, some

13




topics worthy of future investigation which would serve to improve the
jet inlet model of Figures 1 and 2, and to extend the present analysis
to inlet shapes other than the ones considered in Figures 1 and 2, are

also briefly discussed.
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SECTION 2
SELF-CONSISTENT MSM FORMULATION

As mentioned in Section 1, the method of RCS analysis of the
configurations in Figures 1-4 is based primarily on the Unifornm
Geometrical Theory of Diffraction (UTD) ray technique and it's
modifications which are used in conjunction with‘the multiple scattering
method (MSM). In the MSM based analysis, the basic scattering
mechanisms are "isolated", and “identified" as being associated with the
scattering junctions. For example, these junctions are marked (I) and
(T1) in Figures 3-5. The multiple scattering between the junctions is
calculated via a self consistent procedure. Such a procedure requires a
knowledge of the generalized scattering matrices [S111, [S121, [Sz11,
(S22, and [Sp] for the scattering junctions (I) and (I1). These
generalized scattering matrices [16,17] are directly associated with the
canonical scattering events shown in Figures 6, 7, and 8. The
scattering matrix in microwave circuit analysis [20] arises in the
description of interior region scattering (e.g., in waveguides) and it
is defined in terms of interior propagating modes; whereas, the
polarization scattering matrix [31,32,33] is defined for exterior region

scattering. The generalized scattering matrix discussed here extends

15




Figure 5, Scattering junctions I and Il for the geometries in
Fiqures 1-4,

a
S —-
— ™S, ©

Su @

™__INCIDENT PLANE
WAVE EXCITATION

Figure 6. Canonical scattering problem for determining Sy; and S2i.
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Figure 7. Canonical radiation problem for determining Sip and Spp.

Figure 8. Canonical problem for determining Sy associated with
the configuration in Figures 1-4,
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the concept of microwave circuit scattering matrix to include evanescent
modes, and to also include the polarization scattering matrix for
exterior scattering. Thus, the generalized scattering matrix is
essential for solving scattering problems which involve a coupling
between interior and exterior regions as in the problem of the
backscatter from jet inlet configurations. The elements of these
generalized scattering matrices which will hence forth be referred to
simply as the scattering matrices are defined next in the paragraphs to
follow.

Let Fi denote the electric field intensity of the incident
eiectromagnetic plane wave, Using the coordinates given in Figures 1-4,
one may express EV as

= (;EZ) . ;EL) oJk(x sing + z cos 0) (1)
where E% and EL are the 5 and ! polarized components of BV
respectively at z=0, and k denotes the free space wave number, Tﬁe unit

- -~

vectors 8 and z lie in the plane of incidence defined by the cylinder

ax's (z) and the incident ray direction. The unit vector ; is
orthogonal to the plane of incidence as shown in Figures 1-4. Likewise,
iet TS denote the total far-zone backscattered electric field and Ez
deno-e the far-zone electric field backscattered from only the open
front end fat 2=0) of the configurations in Figures 1-4. 0One can aiso
express TS and EZ in terms of their ; and ; components as

=5 .S s 2
£ =0y + ¢E) . (?)
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S 4 s £S . (3)

EE =6E %0

0 60

—

One may now describe the scatteirng matrix [S;;]. The scattering

matrix [S11] relates the field Eg to 1 (at z=0) as follows.

gs 3

80 8 | o-ikR
= s R, 4
. o) | (@)
40 ¢

where R denotes the distance from the origin to the far zone observation

~

point in the R direction as shown in Figures 1-4, Thus,

Ses Se¢
S11] = . (5)
S8 S¢¢

The scattering matrix [812] converts the circular waveguide
(intake) modal fields that are incident on the opening (at z=0) from the
region z<0 into the fields radiated by these modes from the open end.
The modal electric field E; within the circular waveguide region (z<0),

i.e., within the intake region, may be represented in the usual manner

by [20] /
+ + _. %jB 2 £ - 7j8_ 2z
Eg =11 [Rm enn @~ M+ By (Eqn * Ezpple T M, (6)
mn

where e'nm and epy denote the transverse (to z) electric vector mode




functions for the TEpp and TMpy, modes, respectively. Likewise, 8;

m
and Bpg denote the propagation constants of the TE,p, and TMp, modes,
respectively. As usual, n and m denote the modal indices associated

with the circumferential and radial variations of the modes (or

~

eigenfunctions). Also, €,,y denotes the z directed TMpp electric mode
+
field. The corresponding magnetic field ﬂg within the circular guide

is

FjB' z

+ FjB_ z
M-+ Bym (tham)e %

= 1) (Aon (i + Fing) 1. )

~

The superscripts + in Egs. (6)-(7) refer to modes propagating in the #z

~ L}

direction. To be specific, let ¢'<€,; behave as (cos n¢:) in the
sin n¢

waveguide aperture at z=0 (see Figure 1-4), Then 4'-h,, behaves as

A

('Si” no'y: likewise ¢'+enm behaves as (‘Si” "¢:) and ¢'<hpp
cos ng'’ cos né

behaves as (g?z :i:). In Appendix A, a list of the circular waveguide
modes and also the values of ka at mode cutoffs are given in
chronological order.

Let tg and fg denote the ; and ; directed components of the
electric field radiated by the waveguide fields (F;, ﬁg) after they

impinge upon the open end (z=0) from the region z<0. Then

£" A’

8 nm] e-JkR
--- = [512]2 R R , (8)
x&
3 8]
2x1 ox
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where a typical subscript of the type MxN on the matrices implies M rows

and N columns, and

[A

nm

+ 12
[Bm]

ox 1

L J=x1

It follows that

[S ] [Sénm] [Senm]

12 2| caaamawwoswwo-

1 (Senm] (Senm]
i 2X°°

% | Se010027 S oS e127 S 00156027 (10
! i R T I TIoeTTTeTTT o *
‘ 5601580277 S8115 512775 4015402
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The scattering matrix [Sp1] describes the transformation or
coupling of the incident plane wave field into the waveguide modes as

illustrated in Figure 6. Symbolically, [S21] is defined by the relation

- i
(A Es
(5911 . (11)
- = {921 i
oox 1 2 x 1

where A;m and R;m denote the amplitudes of the TEpn and TMy, modes
transmitted into the waveguide (i.e., in the -z direction) by the

i ia i L
external plane wave field T = Eg® + E4¢  which is incident on the open
end of the semi-infinite circular pipe. From Eq. (11), it follows that

[S21] is given by

Som] 154
o1 o | il (i | )

[Sonm] [Sgnm]
w2

Clearly the problem of determining [S21] is the reciprocal of the
probiem of determining [S12] (see Figures 6 and 7). Thus, a knowldege
of [$123; i.e., Sbnms Senms» Sonm, and Sgnm, together with the use of
the reciprocity theorem for electromagnetic fields allows one to
calenlate S, g&nm- Sonms and §¢nm' and to hence obtain [S21] in

terms of [S12]. In short, the elements of [Sp1] are simply related to

S et g TR T

P




the elements of [S12]7; here T denotes the transpose matrix operator.

The precise relation between [S21] and [Sy2] will be discussed in
Section 3.

The scattering matrix [Sp2] is a modal reflection coefficient
matrix which is associated with the interaction shown in Figure 7. 1In
particular, the elements of [Sy2] describe the reflection coefficients
associated with TE,, and TMy, modes reflected back from the opening (at
z=0) into the semi-infinite waveguide region (z<0) when either a TEpp,
or a TMy, mode is incident on the open end from within the waveguide

region . The matrix [Sp2] is defined symbolically by the relation

Ly | (A
= [S22] ) (13)
(8] o LM o

where, it is noted that [Spp] can be further symbolically expressed as,

hh ' he
Ranpg) 1 [Rmspg
[S22] = eh ' ee . (14)
[an;pq] l [an;pq]

he
The meaning of an;pq; for example, in the ahove equation is the
+
following., A TMpq (or e) type mode with amplitude qu which is incident
at the open end (z=0) is partly transformed (or coupled) into a

- he +
reflected TE,n (or h) type mode with amplitude Apn =Rnm;pqBpgq-
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The scattering matrix [Sp], like [Sp2], is also a reflection type
matrix associated with the discontinuity at junction (2) in Figure 8.

From Eqs. (13)-(14), one may therefore write

o) oo - , 15
o] I U 1)

and

AL amieal
{Sb] - f';eh ] | [Eee * (16)
Camspg ! | Pamipg

ir which ﬁ?ﬁ;pq, for example, has the same meaiing as R:;;pq of
£q. (14). 1In general, however, the values of R:;;pq are quite different
from those of R:;;pq.

At a given operating frequency, the inlet duct or waveguide region
in Figures 1-4 can support a finite number of propagating modes, and an
infinite number of evanescent (or non-propagating) modes. Consequently,
the matrices associated with [S12], [S21], [S22], and [Sy] are of
infinite order to include the infinite number of evanescent modes. It
may be remarked tnat although the matrices [Sy2], [S211, [S22], and [Sy]
are of infinite order in a formal sense, one needs to retain only a

finite number of the elements of these scattering matrices in practice
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because the distance “L" shown in Figures 1-4 is generally large enough !
to where the infinite number of "evanescent" wavequide modes generated
at junction (I) are not observed at junction (I[), and vice versa. The
finite number of elements retained in practice thus correspond to only

the finite number of all the propagating (non-evanescent) modes which

can exist in the waveguide or the cavity region, If the distance L in
Figures 1-4 is small enough so that lower order evanscent modes become
important, then one must include these modes but still ignore all the
higher order evanescent modes in practice since their contribution must
become vanishingly small. In any case, one retains only a finite number
of elements in the scattering matrices. In the present work, "L" is
chosen such that the contribution from all the evanescent wavequide
modes can be ignored.

Regerring to Figure 9, it is seen that the incident electric field

. E
[E1]=[ ] is scattered by junction (1) to produce a scattered field
i

b

[EZ] in the region A, then

(5] = (5,1 ('] &8 (17)

Part of the incident field which is scattered by (1) into region B
becomes incident at junction (II) from which it is subsequently
reflected; this reflected field is incident back at (I) where it
undergoes further scattering into regions A and B, and so on, thereby
giving rise to multiple wave interactions between junctions (1) and (I1).
The fields resulting from these multiple interactions may be expressed

in a convergent Neumann series as done by Pace and Mittra [16];
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however, an alternate prccedure based on a self-consistent method leads
directly to the same result. The latter, i,e., the self-consistent MSM
method for summing up the multiple interactions, will be used in this
analysis. Let [Ej2] represent the net value of the field incident at
(1) from (I11) after taking all the multiple interactions into
consideration. Similarly, let [E;1] represent the net value of the
field incident at (II) from (1) after taking all the multiple
jnteractions into account. Then the total scattered field in region A
denoted by [ES] consists of a superposition of the field [Eg], and [E;],
where [E;] is the field scattered into A when [Ey2] is incident on (1).

Thus,
[es] = [53] + [E;] . (18)
where [gS] may be expressed as
m
] = £ -JkR 19
[e2) = [S12] [512] e (19)

The expressions for [E1p] and [E»1] are given in terms of [Sp;] and
[S22] by

(€213 = [S2120E7] + [S221(E12] . (20)
(Ey2] = (PI(SHICPICERL] (21)
27
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where [Sp] is the generalized matrix corresponding to the reflection
coefficient at junction (I1) as indicated earlier, and [P] is a diagonal
matrix accounting for the phase delay in the propagation path L.

Fliminating [E}2] between Eqs. (20) and (21) yields
([11-0S2230P1CSHILPT) [E21] = [S21](E1Y . (22)
where [1] is an infinite-order identity matrix. Hence, it follows that

(E21] = ([13-[S22][PILSHIPI)-L [Spp 1] (23)
From Eqs. (21) and (23), [E12] becomes

(123 = [PI0SHIPT ([13-[S2210PICSHICPT)-E [S21ICETT . (24)

Incorporating Eq. (24) into (19) yields
s 1 ) -1 i1 e-jkR
Lgij (S1230PISHIEPT ([1]-0S221CP1(SpICPT) -1 [Sp11[EY] e-JXR

(25)
Finally, combining Eqs. (17) and (25) according to Eq. (18) yields the

self-consistent axpression for the total scattered field [ES] as
(ST = ([S113+[51230P IS IPI(LTI-[522]0PICSHI(P]) -1 [S21 1} [EY] e-gkR .

(26)
In tho snecial case of the geometry in Figure 4 where the field
backscattered from a hollow finite cylinder open at both ends is of

interest, an additional interaction becomes important and it must he
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included, The latter interaction corresponds to waves coupled from the
interior waveguide region to the exterior region via diffraction at the
end z=-L, and vice versa. The fields of these interactions can also be
found via the UTD in a manner similar to that done for [Spyl; this

t field contribution to the backscattered field resulting from the

internal-external coupling must be added to the result in Eq. (26).

[t should be observed that the latter is of little interest in terms of

jet intake configuration of Figures 1 and 2,

It now remaihs to find explicit expressions for [Sy1], [S12],
[S21], [S22], and [Sp] to complete the calculation in Eq. (26). These
scattering matrices are formed via the UTD ray technique as discussed

next in Section 3.
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SECTION 3

ANALYTICAL DEVELOPMENT OF THE ELEMENTS
OF THE SCATTERING MATRICES IN MSM

The scattering matrices [S11], [S12], [S211, [S22], and [Sp]
associated with the canonical scattering events shown in Figures 6-8
were defined in the previous section, 1In the present section, the
elements of these scattering matrices are found via the uniform
geometrical theory of diffraction (or UID) ray technique [1] and its
modifications at caustics. The present ray analysis is restricted so as
to be valid only in the range 8{n/2, where 6 is snown in Figures 1-4,
The reason for this restriction is that in the present work, the RCS is
of interest only for 0<(n/2. This analysis can of course be extended to
0>n/2; howevar, that extension is not reported in this work., The UTD
ray analysis is appealing because it leads to a simple localized
physical description for the scattering process in terms of rays, and it
also provides relatively simple and accurate expressions for the
scattered fields, and hence for the scattering matrices. 1In order to

exploit ray wethods systematically, the modal fields within the circular
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intake (or waveguide) region have been converted into a set of
equivalent rays, and vice versa. These scattering matrix calculations
based on the UTD and its modifications at caustics are found to agree
extremely well with those obtained from the exact Wiener-Hopf solutions
available in the open literature [7,9,10,11,12] for the problem of
diffraction of waves by a hollow semi-infinite circular pipe. This
agreement holds even for the dominant mode regime within the circular
pipe. It is noted that while the exact Wiener-Hopf solutions for the
hollow, semi-infinite circular pipe provide very valuahle checks on the
UTD solutions, they are far more complicated to use than the present UTD
solutions. Furthermore, the present UTD analysis can be extended to
intake shapes other than those which can be analyzed via the Wiener-Hopf
method. The reflection from the blades (i.e., blade scatter) in Fiqure
8 is found by employing a geometric optical type of approximation for
the blade current induced by the modal fields which are excited within
the intake by the incident plane wave. This approximation for the blade
current is simple to apply, and it is expected to be reasonahly accurate
for a large number of blades closely spaced together as is generally the
case in actual jet inlets. It would be worth investigating a more
rigorous representation for the blade currents in a future study. The
UTD ray analysis and its modifications at caustics which are required in
the development of the elements of the scattering matrices is described

next.
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A. Ray Analysis for [Sy1]

The scattering matrix [311] describes the fields scattered from
only the open end (z=0) of the geometries in Figures 1-4 when these
configurations are illuminated by a plane wave. In particular, [S11]
describes the fields scattered from junction (I) corresponding to the
canonical scattering event as depicted in Figure 6 pertaining to a
hollow, semi-infinite circular pipe illuminated by an EM plane wave.

The iatter problen in Figure 6 can be analyzed efficiently via the UTD
ray metnod and its modifications which are required along ray caustics.

Consider the plane of incidence formed by the incident ray and the
cylinder axis {(z-axis) and let the x-coordinate lie in this plane. This
x-z plane of incidence intersects the rim at the open end (z=0) of the
cylinder at two points denoted by Q) and Q2 whose coordinates are (x=a,
y=0, z=0} and (x=-a, y=0, z=0}, respectively. Only 6&x/2 is
considered here for reasons mentioned earlier. According to Keller's
[21] gencralization of Fermat's principle, Qi and Q constitute the two
points of first order or single diffraction from the circular edge (rim)
of the open-ended cylinder. Additional higher-order diffracted rays
which eninate from the curved rim after undergoing multiple diffractions
across the aperiure formed by that rim at the open front end (z=0) also
exist, and their contribution must be included in calculating the total
fiela backscattered from the open front end. In general, these higher
order {or mu'tiply) diffracted ray contributions beyond the second order
(or douhly) diffracted ray interaction may be ignored for backscattering

aspects away from the z-axis (or 0=0 direction). Howevor, for on-axis
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(8=0) backscattering calculation the higher order diffracted ray
contributions can become important especially as the radius (a) of the
cy]inder is decreased, [t is noted that the axial (or 6=0) direction
is a caustic of the rays which are singly and multiply diffracted from
the circular rim (or edge) at the open front end (z=0) in the case of
axial backscatter.

Initially, the UTD analysis of the problem in Figure 6 will be
described for the first order or singly diffracted fields which
contribute to the backscatter. This analysis will then be followed by
an analysis of the multiply diffracted ray fields which can also

contribute to the backscatter.

(i) First Order (or Singly) Diffracted Ray Contributions to [Syi]

The UTD ray field EPS1 which is singly diffracted from points M
and 02 on the circular rim (edge) at the open front end (z=0) is given
by [1,21]

beI hsl * bsl ~

=Ego ¢ +Eg 8 . (27)
where
bsl 2 -j2kasin® o -jkR
Eoo =+t 1 EpOs(v ,¥!580) tfa Py(§) e ;
80 2=l o h & L VLE R
(28)
8 not close to zero
and _im
( 1 Vo- Ve T2, 0¥
Ds(¥ ,9'58 ) = - e sec (Y27¥e) Flaktcos®(¥iz¥e))
h 2 L o 2/?nksin8° 2 ?

; PV Elokicos?(YTV) ]} (29)
¥ osac (__7- ) Fl2kLcos (__7__)]
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for a half plane. In Eq. (29), the "L" is an appropriate distance
parametar within the "F" function which involves a Fresnel integral;
“C" and “F" are as defined in [1]. When 2kfﬁosz(wz ¥ ¢k)>3,

~ ' -
F{2kLcos2(¥e 7 ¥2)]~1; and in the following, "F" is set equal to
unity whenevei the latter condition is true.

In Eq. (28), Dg denotes {igiﬁ} edge diffraction coefficient
[1,20] at Qg (i.e.,hat Q1 and Q2 for 2=1 and 2=2, respectively). The
parameters wg,qk. and By at Qg for the backscatter case are defined as

- ' - -
by =¥ 5 B =T, (30)
where Vos¥) or ¥ as in Figure 10, The angle 8y is defined as
-0, it 2=1 (i.e., for ray diffracted at Q)
6, if ¢=2 (i.e., for ray diffracted at Q)
The factor Pg(j) is defined by
1, when an edge diffracted ray from Qg(#=1, or 2) does
I not c¢ross the axial caustic (z-axis)
Pe(i) = (32)
L j» when an edge diffracted ray from Qg(2=1, or 2) crosses
the axial caustic (z-axis)
The factor Pg(j) is requirad since the cylinder axis is a caustic of the
rayvs diffracted from the circular edge (at z=0). Upon crossing such a
cdustic, the phase associated with that diffracted ray undergoes a jump
of + n/2 radians which is properly taken into account via the factor j
appearing in the RUS of Eq. (32). The quantity R in Eq. (28) denotes

the usual distance from 0 to the far zone observation point in the R

direction. From Eq. (28), £qs. (4)-(5), and the explicit form of Dg in
h
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Figure 10, Geometry of rays diffracted from points Qi and Q2 on

the edge.
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Figure 11, Aperture and rim coordinates at z=0,
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{1,21], it readily follows that, for a unit amplitude plane wave

incident on junction (1),

S 2a(1. 1 2 cos (2kasine-T) ; 60, (33)
68 7 ( cos 0 /n?kas?ne ( "7

and

S =-a(y o+ 1 , 2 cos(2kasin6-T) ; 08¢0 , (34)
¢ "?( cosO) n2kasin® ( T

Near the caustic direction (0+0), Eq. (28), and hence Eqs. (33)-(34)
break down. A uniform asymptotic approximation for Sgg and S¢¢ which is
valid near and at 0=0 may be obtained via the method of "equivalent"
edge currents which indirectly make use of Dg as indicated in [22].

The equivalent electric and magnetic edge currents 1 and M,

respectively are positioned on the circular edge or the rim at the open

end (z=0) of the semi-infinite cylinder, and they are given by [22]

oo D (¥s¥';8p) (1.4
I =y f8n Ds{en¥iifo) (Fle) . (35)
1(¢) 0 JE Sinao ( rim
and
M ! = —Z -q’.l Dh(‘p"pl;B’O) ﬁo I) . . (36)
1(¢ ) 0/ 3% sinBg (- rim

~

where ¢' is the unit tangent vector to the circular edge or rim (at z=0)

in the usual cylindrical coordinates at ¢', and ', ¢, 8', 8 and
0 (¢}

a

;; ) .+ ¢' change as a function of position on the rim. The coordinates
rim

of any point on the rim are (p'=a, ¢', 2'=0); the primes denote the

source coordinates associated with the equivalent sources Iy and Mj.
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“ The quantities y and ¢' in Dg are interpreted as the usual projected
h
incident and diffracted ray angles which are obtained by projecting the

incident and diffracted rays on the rim, and B'y is the acute angle

between the incident ray and the edge tangent ¢'. The incident magnetic
field Ml is related to Fi via Ai=-YRxET in which Z, is the free space
impedance, and Yy=(Zy)-l. When the above equivalent currents are

incorporated into the usual radiation integrals, one obtains the fields

s AT RT v s P T P A T A o,

radiated by these currents as

bs1 o 2 Jkp R -ikR
_ ikZ, ' X A “tye e’ .
£ . [OI do'aR x Rx 1) 3" ¥ Rxmpie Je
(37)

where k denotes the free space wave number and p'=a B'. The quantities

~ a ~

to be at Q1 and Q2 on the rim (see Figure 10), and the corresponding

|
| $',9',p' and R are shown in Figure 11.
For ka sin 6>>1, Eq. (37) can be evaluated asymptotically via the '
method of stationary phase, This procedure yields the stationary points m
|

stationary phase solution agrees exactly with Eq. (28), as it should.
While the integral in Eq. (37) can be evaluated exactly in closed form
only for 6=0, it can be evaluated approximately but accurately in

; closed form for 6 small as follows,

As a first step in the approximate evaluation of the integral in
Eq. (37) for 6 small, one may fix the Ng in I and Dy in My to their
values close to the caustic direction (0=0) because, the diffraction
coefficients Ng are slowly varying with respect to 0. Thus, for 5 very

h
small, the integral in Eq. (37) is given approximately by
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3

_bsl -3kR ] ; j2kasinbcos ¢
= =3k [81 4 e {n (8:0)/d¢' [RxR '-EjcosBsing'
3 AL EE_a __ﬁ_{ ( ) 6 [ xRx 4" ) (E ¢’cosq> ocosesing') Je
2n ) _ j2kasinécos ¢’
- Dh(e=0)fd¢'[(Rx¢')(E;cosesin¢'+ELcos¢')]e . (38)
o .

The above integral can now be evaluated in closed form to yield

n

bs1 z S
Eao = €502 & a) {1 (9:0)0. (2kas 1n0)-D (0-0)cas?o 1 (2asin0)y o
(39)
i1 .
E:zl= £, (/77 e a){Ds(0=0)J;(2kasine)+0h(e=0)c0520 JiiPkasind); e:kR
(40)

It is clear that the above result which is valid at and near the caustic,
i.e., for 0 at and near zero can hlend into the two-point result of Eq.
(28) which is valid for 8 not close to zero (i.e., far from the caustic
direction) if the Dg(06=0) in the above result for small 0 is now allowed to
be a function of G.h Thus, one may heuristically replace Da(e=0) in Eqs.

(39)-(40) by Dg(0) to yield ‘
s ;

bs1 . -JkR
1 J1({2kasing)

£, =E @ ) J (2kasin® 1+ cosZo J1

o0~ Fo g 1hg) I R i e el o

(41) H

and

hsl . 'kR
£ - A 1¢_l__ d 2K o)+ 1_ 6 J1(2kasino0) .

$o ) I cos ) ( asin0)+( 0s 0 )cos T 2kasing b




The above result for 5331 corresponding to the singly diffracted
contribution to the baggscattered electric field is now valid for o
small and large. Thus, Eggl in Eqs. (41)-(42) is “uniform” in the sense
that it remains valid at agd near the caustic where the ordinary ray
solution of Eq. {28) fails, and it reduces uniformly to Eq. (28) far
from the caustic where the latter expression is indeed valid and
accurate, Furthermore, it can be shown to remain quite accurate even
for intermediate values of 6 by comparing it with the exact Wiener-Hopf
solution when only the first order terms are retained in the asymptotic
approximation of the latter solution,

For ka small, higher order (or multiply) diffracted rays can
contribute significantly to the backscatter from the open front end,

The expressions for these higher order diffracted field contributions

are discussed next.

(ii) Higher Order (or Multiply) Diffracted Ray Contributions to [Syi]

Let EDSM denote the electric field associated with the rays
backscattered from just the onen front end (at z=0) after undergoing
multiple diffractions across the aperture corresponding to the open

front end. [t is convenient to express Tbsm a5

“bhsm _ _bsm A bsm . . 43
G R S (43)

In determining EPS™ for backscatter directions which are not close to

the axial (0=0) direction, only the doubly diffracted ray contributions
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need to be included for accuracy when ka is not sufficiently large,
hecause the contribution from all the other higher order multiply
diffracted rays in general becomes sufficiently weak in this case as to
be ignorable. It is noted that m=2 in the doubly diffracted ray
contribution to EPSM, i,e., TPSZ is the doudbly diffracted ray
contribution to EPSM, If ka is sufficiently large, then even the doubly
diffracted ray contributions become insiqgnificant in comparison to the
singly diffracted ray contributions for the off-axis (or 6 not close to
zero) backscatter directions. It is noted that the entire rim
contributes to the diffraction at axial backscatter in contrast to just
a few isolated points o}-diffraction on the rim which contribute to the
hbackscatter in the off-axis case, because in the case of on-axis
illumination the cylinder axis (0=0) is a caustic of the rays diffracted
by the rim. Consequently, an equivalent rim current solution must be
ohtained for 6 at and near zero in order to express EPSZ2 at and close to
the axial caustic as done for the first order or singly diffracted
contribution EPS! near the caustic. The equivalent current caustic
solution for EPSZ will be shown to generally yield numerical values
which are approximately the same as those obtained from the off-axis
solution for EPS2 (which is based on a few isolated points of
diffraction on the rim) in their common domain of overlap in 0. Thus
one could switch from the caustic solution to the off-axis solution for
EPSZ in their domain of overlap. For the special case on axis (0=0), a
separate solution for EPSM is also provided (in addition to the caustic

solution for TPS2 mentioned earlier) which includes not only douhly, but
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also triply and all the higher-order diffracted rays. The latter
solution EDSM for 6=0 which is admittedly more accurate than the caustic
solution for EPS? at 6=0, especially when ka is not sufficiently large,
is also more cumbersome to use in practical applications, Furthermore,
even when ka is not sufficiently large, TP52 is usually within one or
two dBs of the value predicted by Thsm, Consequently, in the MSM based
analysis for the problem configurations in figures 1-4, only the second
order E®S2 solution will be enployed for both, 0 near and far from zero
to yield the higher-order diffraction contributians to the total
backscattered field EDsM,

In the off-axis backscatter case, it is seen via Figure 12 that in
general, a set of four rays contribute to the backscattered field after
undergoing double diffraction. The total doubly diffracted

backscattered field contributinan can be expressed as

bs2 il2r i2lr i34r i43r
E¢o = E¢ + E¢ + E¢ + E¢ . (44)
80 0 0 0 0

where the superscript, i-1-2-r, for instance, denotes that the incident
field (-i-) is diffracted from point 0;(-1-) to Qp(-2-), and then to
the far field (-r-), and vice versa. It is found that points 03 and

Q4 are symmetrically located with respect to the xz-plane, and the

cylindrical coordinates of Q3 (p=a, ¢=¢3, 2=0), and 04(p=a, 4=0y»

z=0) are obtained by letting
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Figure 12, Mechanisms of 4 doubly diffracted rays across the
aperture of the hollow circular cylinder.
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i.e3= d . e3

~ -~ '

d. e, = -i . eq

(45)
(46)

to satisfy the generalized Fermat's principle at points Q3 and Q.

~ ~

Here, i and d are the unit vectors of the incident direction and the

diffracted ray direction across the aperture. e3 and e4 are the unit

- ~ -~

edge vectors at Q3 and Qg, respectively. i, d, e3, and eq are given by

= =X Sin 6 - z cos © .

ooy ey
i

= X C0S a+y sin a .

ey = -X sin ¢3 + Yy Cos ¢3 .

e, = -X sin ¢4 + y €oS ¢4 .
and,

sin ¢4 - sin ¢3
tan a = 3 < .
cos - €0S
4 ¢3

Thus, by substituting Eqs. (47)-(51) into Eqs. (45)-(46), one

¢ =.% + tan'l(sine) .

aﬂd ¢4 = -¢3 .
[t can be shown that

flar_ _i2lr  _134r  _i43r
Es =E¢ 3 Ey =Ey .
0 6 0 ]
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(47)
(48)
(49)
(50)

(51)

ohtains

(52)

(53)

(54)




which is to be expected from reciprocity. Therefore, £q. (44) becomes

bs2 ilz2r i3ar
E¢0 = 2 E¢ + 2 E¢ . (55)
80 8 0
where
i12r i -j2ka cos?9 -jkR
£ =F. ae 2e . (56)
i12r 1 -j2ka sinZd -jkR
£ -g. ae 2 e . (57)
1300 g1 (02012 an2eos2)ed kS TNOCOS 0y, b
¢ ot-s® h=o> R
(58)
i34r i,02 .. 2.2 2 . j2kasin0cos¢ -3kR
Eg = Ee(Dhsin 8+ cos 0)e 3 %. .
(59)
and,
.'N
-

D, = _ [sec(™ - &) £sec(®+ £&)]; (60a)

b 2/7 sing! T 7 L

sing! sl - tan”! (—uinfe) (60b)

¢1+sin20 /l-sinJE
g = —=Ld . (60c)

/l+sine '
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Figure 13, The doubly diffracted ray for the equivalent current
solution, Here, B") is not necessarily equal to Rye
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, -3/2

i34 _ -3 . 380 L . 1+2sin20 i 02 (60d)

P = e 3 P = -3 (1+sin®8) .
(1+s1n20)3/2 2sin26

Near the caustic region (6+0), Eqs. (56)-(59) break down and the
equivalent current formulation is employed to correct the results as
follows. Let (a, ¢', 0) and (a, v', 0) be the cylindrical coordinates
of the first and second diffraction points on the rim as illustrated in
Figure 13. To satisfy the generalized Fermat's principle at point (1),

it can be found that

- ~ ~

d=xcos B+ysing . (61)

It

where

B=m+ ¢' - sin-l (sindsing') . (62)
Thus, v' and ¢' are related by

v' =1+ ¢' - 2sin-1 (sindsing') . (63)
which is illustrated in Figure 14. The doubly diffracted field in the
backscatter direction can be expressed in terms of the equivalent

current form as

—t
Z2n jkpeR  -jkR
~bs?2 _ jkI I Ao JKP J
g% = Ko 1f ¢ RXRXI V' + Y RxM e . (64)
52 [O v' a(RxRxI, SRXMyv* e ] 2

where

IZ(V') = =Y 8n DS(“’;"’.;BQ) (E112‘V.)

(65)
0/ Jk T sTnB,

rim
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Figure 14, The relationship of ¢' and v' with 8 varied
from 10° to 80° in 10° step,
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mylv') = -z, [S1 Ph(%¥iho) @20 (66)

0 .j-k_ S]nﬁo rim
and
o' =1, ¥ =7+ tan~l(tan 8 cos v') ; (67a)
2

singy = /ﬁ - sin2osin¢' , singy = /& - sinesin2v' (67b)

vi = =x sin v' +y cos v' (67¢)

RxRxv' = -8cosfsin(¢-v') - ¢cos(¢-v') , (67d)
{
! A A A ~

Rxv' = -8cos(¢-v') + ¢cososin(¢-v') , (67e)
|
f with 8 = xcos8 - zsin0, ¢=y and ¢=0 in this case.

Fil2 and AI12 are the electric and magnetic fields incident at the
sacond diffraction point (2), after being diffracted from point (1).

112 and F112 can be evaluated via [1] as follows.

Iy -‘? -
G A (68)
0 o
Wil?, = 8 ”LIZ - ”ll?. . (69)
0 (o
where

48




E——

L ——————

- -

B =xsin y -y cos vy

and

m+ ¢' - sin-l(sin6sing’)

<
"

(70a)

(70b)

- - 112 i2
Since v' . ¢ =0, one only needs to evaluate Eg =~ and Hg . Thus, one

obtains [1]

gil2

!
]
oo o

TUR Y

1]

EL = [EL sin¢' cos & - E; (sin® sins + cos¢'

g Sine' cos & - Hl (sin® sins + cos¢' cosO coss)

(71)

(72)

cos 8 cosé)]ejkasmecos¢l .

(73a)

]ejkasinecos¢' .

(73b)




ol e AR e is ki Lt s : ittt

tan & = sin 0 cos ¢' . (74)

cos O
Also,
. 2
o = a sin 8, R (75a)
sin 6 cos ¢' - Sin Bg
and
s = 2a sin By . (75b)

The Dg in Egs. (71)-(72) is given by
h

ki
-3%
Ng = -¢ [sec(¥=¥') = sec (¥+¥')] » (76a)
h 2/727K sin Bo 2 2
with
-1 : [ .
' e+ ta sinbcos ¢ =T (76b)
v " " cos 6 by 7
sing = /ﬁ - sin%e sin2¢' . (76¢)

It is noted that the integrations in Eq. (64) can be carried out
numerically only for 06<30°., When 6>30°, a complication arises in that :
more than one singly diffracted ray can strike the second diffraction
point (2) as may be readily seen from Figure 14. In the equivalent .
current solution, this proximity of the ray fields at the point (2)
leads to a singular result. 0On the other hand, 8>30° is usually a

sufficient condition to meet the criterion ka sin 0>>1, so that the




equivalent current solution of Eq. (64) asymptotically reduces to the
four-point result in Eqs. (56)-(59) which is valid far from the axis
(at 0=0). Furthermore, the four point doubly diffracted ray
contribution remains bounded and accurate even in the case for which the
equivalent current solution becomes sinqular, Thus, in practical
computations, it is recommended that the equivalent current solution for
Tbs2 which remains valid at and near the axial caustic (at 6=0) be
switched to the off-axis 4-point solution for TbS2 whenever 0>30°,
Although the doubly diffracted ray contribution to the
backscattered electric field EPS2 has been evaluated above for both, the
off-axis or 0#0 case and also for the paraxial case where 9 is at or
close to zero (and 8=0 is the caustic direction), a separate
solution will also bé obtained below for the general mth-order multiply
diffracted field EPSM in the special case of on-axis incidence (i.e.,
axial backscatter) as mentioned above., The reason for developing an
expression for EDbSM for the special case of axial (8=0) backscatter is
that it would enable one to estimate the importance of the triple and
higher order multiple diffraction effects which are not present in the
expression for the doubly diffracted field EhsZ2, TOSM will be developed
below only for the case of axial (0=0) backscatter because it is
tractable in this case. Such an mth-order result for TPSM which would
be valid for the off-axis (or 0#0) case cannot be obtained in any
tractahle fashion. Furthermore, myltiple diffraction effects beyond the

doubly diffracted ones are in general quite weak for the off-axis {or
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0#0) case and nhence there is, in general, no need to consider the

mth-order solution {for m>2} in the latter case.

The general mth-order solution EPSM for the 8=0 (axial
backscatter) case will be constructed in terms of the previously
described equivalent rim current concept as follows. First the singly
diffracted contribution TPS1(6=0) will be listed to be followed by the
expressions which will be developed for the doubly and the triply
diffracted contributions TPSZ2(6=0) and EPS3(06=0). A sequence will
titen be shown to emerge from EPS1(6=0), EPS2(0=0), and FHs3(8=0)
which can be directly generalized to EPS4(e=0), EPS5(0=0), etc., and -
hence to EPSM(0=0) via the process of induction. One begins with the
first-order (or singly diffracted) contribution EPS1(9=0) which is
developed as follows. Referring to Figure 15, the incident field is

given for the case of axial incidence by

~

Fi = - x £, oJk2

£, . (717)

Since ¢ = w in Eqs. (35)-(36), only the equivalent electric current

contributes to the axially backscattered field; i.e., the equivalent

magnetic current gives a vanishing contribution. Thus, as in Eq. (37), '
. _‘-kR 2n jk-p"oR A A -~ .
Eb51(9=0) - Jkg | e ) e (RxRxIl¢')ad¢' . - (718)

In- R 0

ey ———

with
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Figure 15. 0On-axis backscattering from the open end of a
semi-infinite conducting hollow pipe,
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a(x ¢ns &' +y sin ¢') ,

-
It

~ ~ Y

~x sin 4' +y cos ¢' .

©
"

It follows that

-3 2 - -
E351(9=0) - dKy L e IR I " {xsine' -~ ycose') 1 dp' .
&n .ﬁ 0] 1
where
-jT
- q
[ =-2Flp(v=yp=x). [Br e
1 A s( v ) T
. 2F . .
S 3__?9 sin ¢ at z=0 ,
0
Thus, one obtains
~bst R -JkR
£ (5=0) = x E, g.- e when 6=0

Tatter is specialized to 0=0,
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(79)

(80)

(81)

(82)

fhis result checks with that in Eqs. (41)-(42), as it should, when the




One can extend the above approach to obtain the axially

backscattered field due to the 2nd-order (or doubly diffracted) ray
interaction as
_bs2 -jkR 2m
e

E (8=0)= %%2 . Zo . - g (x sin o -y cos $') I2d¢' .
(83)

in which only the equivalent electric current I is non-zero (the

equivalent magnetic current contribution vanishes again). Specifically,

~oel -jr
= - ¢'eE2 g . 8 3 (84)
I T - .D _ﬂ, = J_ e .
2 7 SV mgovsm o
and
—; “, . . -2jka
= . i . ,-_-'ﬂ =
E2 = ¢ E0 sin ¢ Ds(w 5 V= ) T i - e
p = -2 . (85)
Therefore,
. -j(2ka+l)
Iy=-Zo.sing' _L .e T (86)

o /mka

By comparing I» in Eg. (86) with Iy in Eq. (81), one can readily obtain
E"2 (0:0) = u, + E°S1 (0=0) - (87)

where up is given by
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-j(2ka - T
Ll i (88)
Y uka

Us

Likewise, one may obtain the axially backscattered field EPS3(e=0) due
to the 3rd-order (or triply diffracted) ray interaction via the
equivalent current concept as

-jkR 2m R

(0=0) = Jjka .7 . @ [ (x sin ¢' - y cos ¢')I3d¢' .
0

Ehs3
Tn 0 R
(89)

vitn

- -3
Iy = - RL I N (¥ =2, v=m) - [gi e ¥ at z=0 . (90)

As shown in Figure 16, it is noted that the ray singly diffracted from
any noint on the rim (edge) traverses across the aperture to be
diffracted again from a diametrically opposite point on the rim, thereby
producing a doubly diffracted ray. Likewise, the doubly diffracted ray
wnich traverses the aperture can in turn be diffracted once again from a
diametrically opposite point on the edge to produce the triply
ditfracted ray, and so on. Now, the doubly diffracted ray which
traverses the aperture (to produce the triply diffracted ray) will lie
on the reflection shadow boundary of the singly diffracted ray (which
producas the doubly diffracted ray). Due to the fact that the doubly
diffracted ray lies on the reflection shadow houndary, the field
assncidted with that doubly diffracted ray in the aperture is non-ray

nptical, Thus, one cannot use the edge diffraction coefficient which is
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Figure 16, Mechanisms of the scattering from the open
end of a semi-infinite conducting hollow pipe.
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valid only for an incident ray optical field to directly calculate the

field of the triply diffracted ray. However, it is possible in this
special case to decompose the non-ray optical doubly diffracted field in
the aperture into two distinct ray optical components, The diffraction
of each of these two ray optical components can then be directly
calculated using the edge diffraction coefficient which is valid only
for a ray optical incident field, Let the two ray optical components of
tnhe non-ray optical doubly diffracted ray field along the aperture
{i.e., along the reflection boundary), be denoted by F;.l and t;,g,
respectively when the field is evaluated in the limit as the observation
point moves to the aperture from the shadowed side of the reflection
boundary. Let the total original non-ray optical field be denoted by
E3. lhus,

_i i
Exllim =E3,1 + E3,2 . (91)
from shadow side

If the Timit of the total non-ray optical field value E3 in the
aperture was evaluated from the lit side of the reflection boundary, one

would obtain

]
i i _(go)i
Féllim =13,1 - £3,2 + E3 . (92)

from 1it side
where €§g°)i is the geometrical optics field "reflected" from the edge
illuminated by the singly diffracted field in the aperture. This term
must be included in the total field calculation since it is non-zero on
the 1lit side of its reflection boundary. Furthermore, it can be shown

that
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€§,2 - 1 TE3(g0)i | (93)

: 2z
so that
(T = F )= . 94
3 lim from 3 1im from 3 (94)
shadow side lit side

as expected since the field in the aperture after the second interaction
. must be continuous across the aperture. The ray optical components

i .
E3,1 and E3,2 are explicitly given by

i -j2ka

t = )] [ . (95)
31 7 52 0 Jorermy ©
and
i i r r -j2ka
-1 1 Pl 02 e . (96)
Ry g ==&y (-1)
SR (of+2a)(o5+ 2a)
with
_3n
pf . - J{_ . (97)
s 2/771k

r r
Here p is obtained by [1] to yield p=-a. o] and pp are the two

principal radii of curvature of the reflected wavefront associated with

Eggo)‘; they are given as follows [1].
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1)

r r Gi
QI c cosS

and

—
.

1 2 cosol .
]

r
2 e 2

th

=1

(98)

(99)

] N . .
where e and r.are the two principal radii of curvature on the surface.

in this case, 9]=0, re=-a, ré=w . 11=a, and n?=2a. Consequently,

p;:_a H 05:26 .

One thus obtains

T
w o

0

=
W
m
~N

.

. -j2ka -jx
AN (1+8°85 .

;7; Y21ka

Uy

Puia to the similarities in the expressions between Ip and I3 (see

Las. (84) and (90)), one readily obtains

bs3 52
3 (0_'0) = ll3 rb (6"’0) .

(100)

(101)

(102)

(103)
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Combining Eqs. (82), (87), and (103), one can obtain the on-axis
backscattered field F§(9=0) up to and including the triply diffracted
rays as follows.

-jkR

3 sm -

Therefore, from Eqs. (4) and (104),

- . . 0
So0 |0=0 = Soo |e=o = ‘~% {L+u, (14u,) (105)

or, equivalently, the on-axis RCS from the open end of a semi-infinite,

perfectly-conducting circular pipe is given by

2
o 6=0 = ﬂaz l 1 + ”2(1 + 113) ' . (106)

The above results for EDS1(9=0), ¥5S2(0=0), and FPS3(0=0) can be

extended to obtain the mth-order diffracted ray contribution to the

axial backscattered field Egs as
-EbS'“(e 0) 'k e“ij ‘Zf" a f ~ ' f
V) = Jra z sin - I d .
fn Do o (SInE mycos L Ay
and
at
¥y R ] )
I 2 - *-m D ! =N ; = 1 _8_’1 e ; and . (108
m 7, s(¥ 7Y ) k m>?2
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i
where T, is obtained by generalizing the procedure used in obtaining
i
E3 of Eq. (94). Each successive bounce (or diffraction) of a ray
optical field component in the aperture gives rise to a non-ray optical

field which in turn can be decomposed into two ray optical components as

in Eq. (91). Furthermore, each of the latter two ray optical components
generates two additional ray optical field components upon diffraction,
and so on. Finally, as shown in Appendix B, the total on-axis
backscattered field which includes all m multiple interactions, where

m+e, is found to be

-5 g _bsm . -JjkR ¢ (109)
=) )= = = e .
Eo(e 0) 4 £ (6=0) = x Eo 7 (1+ Uy T?Wf)
where
-j{2ka - T
L L (110)
4 Yaka
® . ..n
C=1+ 7§ (jB) 0 (111)
n=} n+l
ana .
-j2k
B=-le o . (112) .
7

Also, the on-axis RCS of the open front end (z=0) is obtained from

E¢. (109) as
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}f

o |gp = @ 1+ “Z'r“g‘nt | 2 . (113)
Numerical results for the off-axis RCS (normalized to wa?) of just

the rim, or the open front end (at z=0) of the configurations in Figures

1-4, is illustrated in Figures 17-18 as a function of 0 for fixed

values of ka. These calculations are based on Eqs. (41)-(42),

(55)-(59), and (64)-(76). It is noted that the RCS components ogg and

ope in these figures are defined by

s |2
0gg = 1im 47R7 |E°9’ - 4n|Seel2 (114)
R>w E'I\Z
0
and
2 |ES '2 2 (115)
.. = 1im 4aR® 15901 = 4n(s .
$
with
S hs1 hs2
8o 00 6o

Some of these results are compared with corresponding results based on
the exact Wiener-Hopf solution in Figure 13. The agreement between
these two independent results is seen to be good, LlLikewise, numerical
results for the on-axis RCS are shown in Figure 19, as a function of

a/x (A is the wavelength), A result based on the Wiener-Hopf solution
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(a)

Figure 17. 0ff-axis RCS (normalized to ma2) of a semi-
infinite, hollow, perfectly conducting circular
with ka=7.261. The equivalent current technique
is employed for 6<30°,
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Figure 17. (continued)
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Figure 13. 0ff-axis RCS (normalized to na?) of a semi-infinite,
hollow, perfectly conducting circular cylinder with
ka=14,4. The equivalent current technique is employed
for 6<30° in UTD calculations.,
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Figure 13. (continued)
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Figure 19. On-axis backscattered RCS (normalized to va2) from a
seni-infinite, hollow, perfectliy-conducting circular
cylinder with various terms included in UTD
calculations,

h8




R R G T

(0B}
-10 -8 -6 -4 -2 0 2 K 6

RCS

3% _ ORDER UTD

0.00 0.25 0.50 ©0.75 1.00 1.25 1.50
a/ \

(¢) 3rd-order

= uTD
© — — — WIENER ~ HOPF
© (JOHNSON , WPAFB )
MOFFAT , OSU
&>
aN
D4
g}?
€7
[7+3
)
«©
1
bt
'0.00 1.50

(d) a1l interaction terms included
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for the on-axis illumination is also compared with the present on-axis
solution which includes multiply diffracted rays of all orders (see Eq.
(113)). Again the agreement hetween the two solutons is seen to be
good. It is possible that the inclusion of slope diffraction effects on
the multiply diffracted fields could improve the accuracy of the present
solution for smaller ka even further in the case of on-axis

illumination,

B. Ray Analysis for [Sy2]

The elements of the scattering matrix [S12] describe the manner in
which the modal fields propagating within the wavequide region radiate
into the exterior free space region from the open front end (at z=0) of
the semi-infinite circular pipe (waveguide), as depicted in Figure 7.
The elements of [Sy2] are found here via the UTD together with its
modifications which are required within caustic regions. However, in
order to use the UTD ray technique systematically in this case, it is
necessary to convert each propagating waveguide modal field into an
aquivalent ray optical field at the rim (edge) associated with the open
front end (at z=0). This procedure is in contrast to the UTD ray
technique employed by Narasimhan [18] for analyzing the same problem as
the one being considered in the present UTD ray analysis of [S12].
Narasimhan (18] does not convert his waveguide modal field into an
equivalent ray optical field in his UTD analysis. Consequently, the
UTD, which requiras that the edge diffraction coefficient be employed

only for a "ray-optical" incident field, cannot be strictly applied to a
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“modal" field incident at the edge (or rim). On the other hand, it

appears that if the propagation constant of a mode approaches the free
space wave number, as is the case for a mode which is very far from
cutoff, then the modal field behaves almost like a ray optical field and
Narasimhan's [18] procedure may work reasonably well in that case.
However, Narasimhan's [18] procedure is expected to become inaccurate
for a mode even moderately near cutoff; whereas, the present UTD
procedure which is described below will not suffer from the limitation
present in Narasimhan's procedure [18].

Table 1 indicates the various electric and magnetic field
components for the TEpy, and TM,, modes in a circular wavequide. The

propagation constants of the TE,n and the TMp, modes are given by

Bum = Yk2 - (phm)z and Bnm - /2 . (pnm)z, respectively. Consider a

a a

typical modal field component whose p and z variation is given by

{th for TEpp mode

E =
nm an for TMnm mode
“Ialzl ) (117)
In(Enn) @ ’ am for TE d
y = {Bnm or TEpm mode
nm Bnm fOP TMnm mode

p) in Eq. (117) as J_(x) =

One may decompose J (&,

thus, Eq. (117) becomes

“ivgplzl y(2) Sivg 2l (1) -iv. 2|
Jn(gnmp)e nm - Hn (Enmp) e nm N Hn (F,nmp) e nin

(118)
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TABLE 1

PROPERTIES OF MODES IN CIRCULAR WAVEGUINES

TE modes T™ modes
\j
' '2 | (PpmPy (COS nd 0
JNnm Knm Jn( a ) {gin n¢
; 2 PnmPy (COS n¢
0 JNannm Jn ( a ) 1510 né
Bl ’ P ¢
N nmPnin J‘( nmp) {Cgs n ey
nm a n* 3 sin né¢ 7e’nm
n' ' 3 .
e Mmooy (anO) {-Sm né ep
nm —p n 3 cos né Te
BamPnm 1t (PnnPy {COS n¢
Zh,nmh¢ Nom y Jn( : ) {sin no

- NBnm PnmPy (=Sin nd
Zh,nmhp Nnm ) Jn( P J { cos n¢




TABLE 1

(CONTINUED)
TE modes TM modes
K Pom
nm a '
i
N 2 i
nm ' ' v 2 _
Jn(pnm) J%musnmeon(pnm n®)
N 2
nm '
pnm Jn (pnm) "wesnmeon

]
The normalization factors Npn and Nyy yield unit power in each mode.

Here, ¢gn = 2 for n = 0, and 1 for n > 0.




(1)
From the large argument asymptotic form of H(%)(Enmp) and for real

Yans it is easily verified that the first term in Eq. (118) containing
Hﬁ')(cnmo) represents a conical wavefront propagating away from the
guide center, (i.e., away from the guide axis) as shown in Figure 20;
whereas, the second term which contains Hﬁl)(anmo) is a conical
wavefront (also for real y,y) propagating toward the guide center (or
collapsing on the guide axis). Clearly, the field of the conical wave
which propagates away from the quide axis, i.e., which propagates toward
the rim at the open front end (at z=0), constitutes the ray optical field
which is incident at the rim (edge). This incident field undergoes
diffraction at the circular edge and thus contributes to the field
radiated into the exterior region by the modal field within the
wavequide. Far from the waveguide axis (9=0), one may use the UTD to
caliulate the field radiated from the open end in terms of the two
diffracted rays shown in Figure 21. In accordance with the generalized
rermat's principle, these two rays originate at the two points of
diffraction on the circular rim (at z=0) which correspond to the
intersection of the rim with the plane defined by the far zone
ohservation point and the axis of the open-ended circular waveguide,

ine first arder, or the singly diffracted field associated with the two
rays diffracted from the rim is directly produced by the incident ray
optical field which is incident there. A part of this singly diffracted
field aiso initiates multiply diffracted rays which bounce back and
forth across the apoarture; at cach bounce, a part of the energy is

aqain radiated to the far zone ohservation point along the

1A

o tpank




Figure 20. Conversion of waveguide modal field into the
conical ray field,
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1 Figure 21, Diffraction from the rim of the perfectiy conducting
circular waveguide hy an incident conical ray field.
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aforementioned same two ray paths after being multiply diffracted from
the same two points of diffraction on the rim, The latter contribution
to the radiation field which results from the multiply diffracted rays
may be included for improved accuracy when ka is not sufficiently large.
If ka is sufficiently large, then the field of only the singly
diffracted rays remains significant; thus, the singly diffracted fields
are the dominant contributors to the far zone radiated fields, when 8

is not close to zero. The UTD electric field Fr which is associated

with these two singly diffracted rays is given by

I .y
_EJ- Eg Ey » for TE modes

T r
Eo Es » for T modes

]
2)' cosg sinégm
~ iN+2 a+t+ ' ' ] 5
J Anm kz P' H (an)(JN )

e e
o nmmon nm” [ Cos Sam-C0S g

A

. (cosn¢ 2 sin{kasing - N7 - M) e-JkR |

sinn¢) nkasin® 7% R . (120)

' ' '
-JJn(P } since Jn(an)=0 for

[
(P nm

. {Note that H£2)|(P' ) = -3V o)~

nm n

TEnm modes. };

]
8 Snm
+ 4 (2) ' v | sing cosTH
A H (an) nkZ0 N €086

nm n nm '
6~ 8
C0s 6-C0S -

n+2

. (-sinn¢ 7 o \-ikR
( c05n¢) TKasTnd cos (kasin® ?1 ;) :

17




! {Note that Hr(lz)(p Y~ J (an) in this case.};

) nin n
|
|
' )
r n+2 [y s . B nm
s + (2) siny coso
o~ 3 Bop P M P o T050-Co5 8y _
(122) f
?
——— ‘ |
cosndgy [ 9 . o-JkR }
; 5 cos(kasing - D% . T} €
(STHO¢J dnEaSlne ( R ‘I) R ’ f
1
i
{Note that Hf]z) (Pmnwn(an) in this case.}; «
?
= +
r o2 2 o . fom ?
o toa . Cos7 sin~ g
E¢ J Bon ™ nn M (pnm)( Non) | ———=-
c0s 8-cos &
nln_‘| (123)
o -jKR
“Sinhy 2___sin(kasine - om _ 1) © >
( Cosne” \Ikasing ( TR

Yo v v s vt N _
(P )e=iY (P )30 (P ) i this casel];

It P (
{Note that H - -

n

where the terms within the square brackets in Eqs. (120)-(123) are the
UTD edge diffraction coefficients multiplied by a constant; in

particular,

.
0 51
cosg sinFl . oL 1 B, 5 T, (124a)
cose-cosﬁJ =T ?DS(“ ’ "7)
and
0 :{‘
5‘"?'C°9?! + - 20k . ;Dh(u+0, s; ;) s (124b)

cusO-co§§J
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with

' -1 '
8§ = cos (8 /k) for TE modes

5= | (125)

Sm = cos-l(enm/k) for TM  modes

It is noted that tHe half cone angles of the conical wavefront
associated with the rays incident on the rim (at z=0) as shown in
Figures 20-21 are denoted by 5;m and 6&pp for the TEpy and the TMpg
modes, respectively, These angles 6;m and 8pp  appear in

Eqs. (120)-(123). Note that 6=(8yy or 8nn} corresponds to the

incident and reflected shadow boundary directions associated with the
incident conical wave at the edge as shown in Figure 20. The above
Eqs. (120)-(123) are presented for ZkEEosz(§%§)>3 where E=a/sin5.
Consequently, these equations need to be modified if G*énm or Spn

by including the "F" functions in Dg as indicated in Eq. (29). Since
8=0 is a caustic direction for the giffracted rays, the two point first
order diffraction solution for the radiated fields in Egs. (120)-(123)
becomes singular ai 8=0 and therefore cannot be employed at and near
that direction. The equivalent ring current concept used previously for
evaluating the fields near the caustic direction (0=0) cannot be
employed in this case because the incident conical wavefront which
undergoes diffraction at the rim edge (at z=0) gives rise to a
non-cylindrical wavefront in the immediate vicinity of that edge. It is
noted that the diffracted wavefront in the immediate vicinity of the
diffracting edge must be cylindrical in order for the equivalent ring
current concept to be valid., The reasons for the existence of a

non-cylindrical diffracted wave near the circular edge in this radiation
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problem are two-fold, First, the total field in the immediate

vicinity of the diffracting edge consists not only of the edge
diffracted field which may possess a cylindrical wavefront, but also
consists of the incident and reflected conical wavefronts associated
with the incident and reflected rays which exit directly from the
aperture, The latter incident and reflected conical rays represent the
ray equivalent of the modal field which impinges on the edge f[at z=0)
from within the wavequide region as described earlier. Secondly, the
wavefront of the edge diffracted field in the immediate vicinity of the
diffracting edge may also become non-cylindrical if it is produced by an
incident conical wave corresponding to a wavegquide mode far from cutoff
(i.e., when &y and 8y, are close to zero) because in this case an
observation point in the close vicinity of the diffracting edge (at z=0)
can lie within the incident and reflection shadow boundary transition
regions associated with the incident and reflected conical rays at the
edge, Therefore, a procedure different from the equivalent current
cancent must be emploved to find the field Fr near 8=0, which is
raldiatea from the open-ended waveguide.

A procedure is described below for obtaining ?r which remains
valid for 6 not only at and near zero, but also for 0 far from zero.
Furthermore, for 0 far from zero, this result reduces to the first
order (singly diffracted) two point UTD diffraction solution for fr
ohtained earlier in Eqs. (116) -(123) where the latter is indeed
expected to he aciurate, This prccedure is based on a modification of

Ufimtsev's Physical Theory of Diffraction [24]; it is described next.
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The radiated field Fr can be expressed in terms of the
Stratton-Chu radiation integral [25] over the equivalent surface
currents that exist on the surface & which tightly encapsulates the
semi-infinite open;ended circular wavequide, Let 85 denote the
circular disc shaped aperture surface at z=0 and & denote the surface
formed by the exterior walls of the wavequide., Thus, fr is given by

[25]

. -jkR .. . jkrR'eR
_ Jkig e ' . 126
R ;;I:&;‘i}i""”eq + VR e (126)

where R' is a vector from the origin (0) to any point ong& . Since one
is concerned with the use of rays in this study, it is convenient to

replace the equivalent electric and magnetic current densities j_q and
ﬁéq by their asymptotic approximations valid for large ka. Hence, to a

first order of asymptotic approximation,

- odal d

Jeq ',sd ~Jeq *T . (127)
odal d
d

Jeq |"c ~J . (129)

It is noted that Wgq |:8c=0 because is a perfectly conducting

A
exterior wall of the wavequida, 1n Eqs. (127) and (128),
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P

_inc _modal inc -

—modal
Jeq = Z x Hmodal s Meq = Emodal x 2 . (130)

—inc '
where Hyodal is the magnetic field associated with the waveguide modes
which impinge upon the circular edge (at z=0) from within the waveguide.
) inc . . . . inc
Likewise, Epoda) 15 the electric field associated with Hpodal. On

the other hand, the current densities Uﬁ and Hd in Eqs. (127)-(129)

. Umoda] -modal
denote the corrections to Jeg and Mgq that result from

inc —inc
the effocts of diffraction of the incident modal fields (Epodals Pmodal)

. . 3d 4 . .
at the circular rim (edge). The and M will be described

subsequently in more detail.

It is obvious froin the above definition in Eq. (130) that

_modal .
Jeq =0 on &.. Consequently, the result in Eq. (126) can be

decomposed into

U o-Thy + Ty . (131)
where
r : -JkR ~ ~ _modal ~ _modal ij'-R
.E- = JkZO e ! .
po = L2 l{({ds RXRXJg o+ YoRxMo e
(132)

since ®'= o' on g,, and,
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vorment E g e ey

N e ot 2

= jkz, e "JKR

B

~ad . _d j¥e'-R
§ 1 ds [Rerxd 4 Y ReM e
a

kR . . _d jKR'-R

+ ko € § [ ast [RxRxd Je . (133)
(o

T TR

Obviously, the term fﬂo represents the vector Kirchhoff-Huygen's
aperture integral for field radiated by the open end of the waveguide in
which one employs the common approximation that the field in the
aperture at the open end consists of only the waveguide modal fields
which are incident (on the aperture) from within, The diffraction
current densities Ud and ﬂd in Eq. (133) for fﬁ provide the correction
to the incident mode current approximation in tﬁo. The integral for ?£0
in Eq. {(132) has been essentially evaluated by Chu [2] and is also
described by Silver [24]. The result can be rewritten in a more

convenient form for the present analysis as

ro2 r r'o rto
EI:O = (EPOG 0 + EP0¢ $) o+ (EPOG 0 + EF’0¢> $) . (134)
~~ ~ - N
radiation radiation
from TMpm modes from TEpm modes
where
r + n+2 . 8 6 . 2.
EP06= 'Anmj nkZo siny cos?l - cos0sin &pyp . coséém
€os8 - coss stne(coso-cossnm)
-jkR
N ' -sinng, e , 135)
NnmJn(pnm)Jn(kaSine) ( cosn¢) - (
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8! §'

r' + n+2 sin _NM cos MM
EP0¢ - Anmj (kzo)P;m Z ':?— NAmJn(PAm)
cos® - cosb
am
-jkR
ey’ ina) €SNy e 136
Jn(kaS]n’)Lsinn¢) e (136)
r + n+2 sin 8 cos 8
Egnn =B 5 (kP ) z__ 7 N JNP )
POo nm nm €050 - oS3, am n' nm
nm
-JkR
. : cosnégy e 136
Jn(kasme)(sinn¢) £ (136)
r
Epgy = 0 - (137)
It is further convenient to identify the terms within the square
brackets of Eqs. (134)-(137) as follows.
[cin & 5
sin © cos PO
22 = ~72mkj 1D n+8, §; 1) (139a)
{coss - Coss 3% (n+8, 55 7
and
sin O cos O PO
f____ji__..;z_ = - 24 Lo (n+e, & 1), (139b)
LcosG Tcoss 7oh 7

with
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5 - { 6nm , for TEnm modes ’
Gnm , for TMnm modes

where Dzo and D:O are the soft and hard physical optics (PO) edge
diffraction coefficients, Far from the axis (6=0); i.e., for large ka
sin 9, and 6 not close to {6;m or 8;m}, the above results for t§0

in Eqs. (134)-(137) reduce to the two point diffraction form as in
Egs. (120)-(122), but with Dgo appearing in place of Da as one might
have anticipated. It will be shown below that only when the fﬁ
contribution of Eq. (133) is added to the I;o of Egs. (134)-(137) to
obtain ?r as in Eq. (126), and the result for Er is subsequently
asymptotically approximated for large ka sin 6 and 8 not close to

{Ghm or 8,n}, then the resulting asymptotic form agrees with the two
point UTD diffraction solutions in Eqs. (120)-(122) which is in terms of
Dg. Returning next to the evaluation of Fﬁ in Eq. (133), it is noted
that Ud and Md in that equation represent the current densities
associated with the edge diffracted field components. The surface
integrals over 8, and A&, must be evaluated asymptotically along

the coordinate transverse to the circular rim thereby reducing those
surface integrals to a line integral over the circular rim (edge) at
z=0. A stationary phase evaluation of that line integral (or the rim
integral) for ka sin 6 large yields a closed form result for Er .
However that closed form result for large ka sin 0 is not valid at and
near the caustic direction (0=0). Clearly, the rim integral therefore

cannot be evaluated via stationary phase at and near the caustic;
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instead, it must be evaluated numerically for 6 at and near zero.

While the reduction of the surface integral for Iﬁ to the line or rim
integral is conceptually straightforward, it is quite tedious since Uﬂ
and ﬂd must be expressed in the proper coordinate systems to carry out
the asymptotic end point evaluation of the integral along the coordinate
transverse to the rim. O0f course, Ud and ﬂd are known from the UTD

edge diffracted fields in the problem of plane wave diffraction by a
half plane [1]. These fields are also identical to those obtained by
Sommerfeld in his solution to the problem of plane wave diffraction by a

half plane [26]. In particular,

~ _d
d {z xH , on 8a
7 = b
o xﬁd ,on B¢ (140)
_d ~
M = Ed x2z,on A,

in which Fd_and ﬂd are the edge diffracted electric and magnetic

fields produced by the diffraction of the incident conical wave (which
is locally plane for large ka) at the edge (see Figure 21). A far more
convenient alternative to the Ufimtsev based formulation for Er in

Eq. (131) which is given in terms of the surface integral representation
for Iﬂ in Eq. (133) is to use the concept of equivalent Ufimtsev edge
currents to ohtain Fﬂ directly in terms of a rim integral rather than
the surface integral. This modification of the Ufimtsev based

formulation in £q. (133) is described below.
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Consider the problem of the plane wave scattering (and diffraction)

by a half plane in Figure 22 for which the exact solution is well known.
It is not difficult to see in this case that when the incident,
reflected, and diffracted fields oresent in that exact solution are
employed to calculate the equivalent electric and magnetic current
densities in the Stratton-Chu integral [2,25] for the electric field
Fﬁp radiated (or scattered) by the half plane, then one should again
recover the original exact solution for the fields scattered {and
diffracted) by that half plane. The Stratton-Chu formulation [2,25] for
'E}:p is the same as in Eq. (126), and the contours B8, and 8. for the
present half plane case are as shown in Figure 22. Note that g, of
Figure 22 locally simulates the aperture®j of the circular wavequide

(see Eq. (126)). Again, the field Eﬂp can be decomposed into

B I I
Enp = Epo(hp) *+ Eu(hp) - (141)

as in Eq. (131). The equivalent electric and magnetic current densities
— _r
Jeq and Mgq that appear in the Stratton-Chu integrals for Epq(pp) and

r
Ey(hp) are given by

Jeq {, * Zx @ +7)] +(@xW) . (142)

Aa Aa Aa
Fea |, - (€ +F)xz] +Ex2) . (143)

Aa Aa Ra

- d
= (- ; -0 . 44
Teq 'ﬁa (-x x ¥ )f‘c + Peq 'ﬁc ° (1e4)
[
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where E , Er, and Eﬂ are the incident, reflected and diffracted
components, respectively, of the electric field present in the exact
solution to half plane diffraction problem of Figure 22 and likewise the

i T Hd e s . . i d
", , and are the magnetic field components associated with F , ,
and Id. It can be shown that an evaluation of the EgO(hp) integral in
terms of Jaq and ﬁéq of Eqs. (142)-(144) yields

Tho(np) = EU( ¥ [-1) + EU([wre'[-n) + Tho (145)

where ¢'=6q, y=m%0;

1, €>0
u(g) = (172 ,£=0 . (146)
0 , £€<0
and
Ed i = PO -jkR
- . . e . 147
Po = E g * 0 (vz6, o ; ,}) - (147)

= n
in which ﬁpo(nte eo;zj is the uniform physical optics edge diffraction

coefficient in dyadic form and it corresponds to the receiver location

EPO soft}

at X § 0. This dyadic can be expressed in terms of the {

hard

~P0
scalar diffraction coefficient Ds 1in a manner similar to that for N as

~P0
indicated in [1]. The ng is explicitly given by
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(148)

When 2kR cos?'("'T 13, the "F" functions in Eq. (148) are
2 ~P0 PO

essentially unity, then Ds (¥',¥; reduces to Ns (¥, ¢'; %) defined
n h

7)
earlier in Eq. (139); i.e.,

T | 4sin ¥ cos ']
__Jl
F0 e j ( ) 1] 2v2wk cosw + cosw
Ds == tan{¢-y' J¥tan(+y' )] = -
h o 2/Znk 7 2 3
ey -jr lasin ¢ cos
| 2727k L cosw + cosw J
(149)
and
~P0 PO (150)
Ds ,¥' 3T > Ds W) .
X (v 31> 0s (v, ¥ ’2)
if 2R cos?/VTVN >3,
2
. ~ .
Also, an evaluation of Ey(np) in terms of the Joq and Meq of
Eqs. {142)-(144) must yield
r
Ey(hp) =Eﬂ . (151)

where
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d fi =y ( ) -jkR
E = )] ntG,O ML P - . 152
u at 0 >7 R 152

The D  may he referred to as a "Ufimtsev" half plane edge diffraction

=U
coefficient in dyadic form., This dyadic N can also be expressed in

v
terms of the {:gﬁz} scalar diffraction coefficient Ns , where

h

v L
D:(‘v- ';;) = -;—;ml )) $<sec(¢;‘l")-tan(q’;¢")> .

(153)

PO U
It is noted that in contrast to Dﬁ , the Dg is valid at and near the

incident and reflection shadow boundaries in the problem of Figure 22;
these shadow boundaries occur at |¢+y'| = m, Consequently, the
wavefront associated with Eﬂ and ﬁﬂ is always cylindrical and one can
always view the field Eﬁ(hp) as being produced by an equivalent edge
(1ine) current referred to as an equivalent Ufimtsev edge current; in

particular, one may write

. 7 e-IkR

= -ykZ I
o uyEw T

i
£ only; and

h| e JKR

(155)
Bk TR

= -kao MU

4~ i
ifH =y H only. Thus, the equivalent electric and magnetic Ufimtsev
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half plane edge currents Iy and My, respectively are given by

[§ i

- - 8 A T .0 156

I Y, 3;(1 D, (¥:v ,,}) (E-y) . (156)
U , g .

MU = - ZO %{l Dh (‘l’y"‘ ;%) (H ¢ _Y) . (157)

The above Iy and M) are obtained by a direct comparison of Eq. (152),
with Eqs. (154)-(155), respectively. These currents Iy and My which
are valid for normal incidence on the half plane can also be directly
generalized to oblique angles of incidence and diffraction on the edge
[23]. Next, comparing the half-plane geometry in Figure 22 with the
local geometry at any point on the circular edge of the open-ended
circular wavequide as shown in Figure 21, it is not difficult to see
that one can define a 85 ={Spy OF 6py} at any point on the circular
edge (at z=0) so that tne field fﬁ in Eq. (133) can now be viewed as
being produced by the equivalent electric and magnetic Ufimtsev half
planc edge currents Iy and My. Thus, using the equivalent current
concept, one may directly employ the Stratton-Chu radiation integral for

H-r. : :
Ey in terms of these rim currents Iy and My, to obtain

_ ikZg e-JkR

U X R

r
E

P [ReRxr+Y Rty o' P Rant (158)
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w%th E'dz‘ = &'ad¢' for a circular rim, and 5‘=;'a. Fq. (158) is in
contrast to the surface integral in Eq. (133) which can be reduced to a
rim integral only after asymptotically evaluating the integral along the
coordinate orthogonal to the rim. Thus, according to the propnsed

T
modification of the Ufimtsev based formulation for obtaining E

, One
may write
I A DRI T TURMPRIRE (Ch
= o ’
E o= Epp+tpoe 9Sdz [RRxIj o' + ¥ Rue' ] e
(159)

where Epg is still the same as in Eq. (132). Only the Fﬂ term in

Eq. (133) which occurs in Eq. (131) is now replaced by the line integral
around the edge as in Eq. (158) above. Specifically, the equivalent
Ufimtsev edge currents Iy and My in Eqs. (156)-(157) which are

modified so as to make them valid for oblique angles of incidence and
diffraction on the edge, without the restriction of generalized Fermat's

principle for edges [23] are now defined by

A}

Lo=-vy [80 1 oYy o' o8 (E -2 . (160)
and
3 1 U = (161)
M, = -2_ [T D , V' 8! H eg' . A
U 0y3k 3$ing, N (vs ¥'5 85) ( )
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As shown in ‘Figure 23, ad and By are the acute angles made by the
incident and diffracted rays with the tangent (i‘) to the edge at the
point of edge diffraction, respectively. In the present case of conical
wave incidence at the edge, the axis (or caustic) of the conical wave
coincides with the wavequide axis and hence Bé = w/2 or sin 38 =1 in

Eas. (160)-{161); on the other hand, 3, is given hy

sind, :v/l - 5inc0 sinlp" . (162)

The above Iy and My in Egs. (160)-(161) reduce to those given
previously in Eqs. (156)-(157) for normal incidence on the edge in which
Bg = a/2 and By = n/2.

[t is important to note that the result in Eq. (159) involving the
equivalent Ufintsev edge current represents a usefui modification of the
original Yfimtsev formulation in Eq. (131)-(133}. Furthermore, this
modified result in Eg. (159) is quite general in that it can be directly
extended to other anterna and scattering problem configurations
involving edges. Basically, the modified result in Eq. (159) implies
that the radiation or scattering can be calculated according te¢ a
physical optics approximation and be corrected by the equivalent
fimtsev edge corrent integral which is then added to the physical
optics contribution of £q. (159). The result in Eq. (159) is to he
used for aii 6 (both near and far from zero) and it is expected to be
ac-curate as long as Iio is not vanisningly small, For 0 + n/2, a
doubly diffracted ray becomes important; its contribution can be

calculated separately via the UTD and it is simply added to the solution
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for'E'r in Eq. (159). For large ka sin 6, the physical optics
contribution in Eq. (159) together with Eqs. (134)-(138) can be
approximated such that the Bessel functions involving ka sin 6 and the
Hankel functions therein are replaced by their large argument asymptotic
forms, When this asymptotic approximation is made, the physical optics
result has the same form as the two point UTD diffraction solution of
Eqs. (120)-(122) except that it now contains the physical optics edge
diffraction coefficients ﬁgo instead of the UTD edge diffraction
coefficients Dg of Eqs. (120)-(122) as mentioned earlier. Furthermore,
the rim integral in Eq. (159) can also be asymptotically evaluated for
large ka sin 8 via the method of stationary phase to yield a result
which is again like the two point UTD diffraction solution except that
it contains the Ufimtsev ede diffraction coefficients 02 instead of

Dﬁ . However, the sun of the asymptotic approximations? for large

ka sin 0, of the physical optics and the equivalent Ufimtsev rim current
integrals agrees with the two point UTD diffraction solution in

fqs. (120)-(122) because

PO U
Os - Ds + Ds . (163)
h h h

It may be remarked that while the two point UTD diffraction solution in
Eqs. (120)-(122) is accurate for ka sin 0 large, the solution in

Eq. {159) is valid even when ka sin 6 is not large; furthermore, it is
expected to be more accurate than the UTD solution for 0 » &y or

Gém even if the “F" functions present in Dg of Eq. (29) are included

in the latter. One notes that the Bessel functions J, (ka sin 8) or
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Jn(ka sin 8) in the physical optics solutions of Eqs. (135)-(138) for

the TMpp and TEnp cases vanish at 8 = 8y, and 0 = 5;m. respectively;
thereby keeping the solutions bounded even when Dgo» © at 8 + &pn

or G;m. Clearly the Bessel functions which keep Dﬁ bounded are

to be viewed as inéident and reflection shadow boundary transition
functions which yield a result for I£0 that is uniformly

valid across the incident and reflection shadow boundaries associated
with 6 = {63y or ka}. It appears that the Bessel-type transition
functions are more accurate than the Fresnel integral ("F"-type)
transition functions of the UTD at least for the present waveguide
problem and especially for ka sin 6 small, Finally, it may be remarked
that the two point UTD diffraction solution valid for large ka sin 6 can
in some problems be generalized heuristically to be valid at and near
the caustic at 8=0 by recognizing the two-point solution to be an
asymptotic approximation of some functional form which yields a bounded
result at the caustic. However, such a heuristic procedure for
generalizing the two-point UTD diffraction solution to the caustic
region is risky in the present open-ended circular waveguide case and it
can lead to an erroneous result. In conclusion therefore, the result
for'E'r in Eq. (159) is to be employed for all o,

A direct application of either the UTD result of Eq. (119) (for 6
not close to zero) or even the use of the expression for Er in Eq.
(159) will generally fail to predict the correct value of'Fr if any
component of'Fgg vanishes at all aspects (see Eq. (134) for fﬁo).

Such a situation arises, for example, in the prediction of the ¢

component of Fﬁo for the radiation by an open-ended circular waveguide
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excited in the TMp, mode. In the latter case, the term E;0¢ is
identically zero in Eq. (134). From a practical point of view, even
though E£g¢ =0, its overall effect in the RCS calculation is small in
comparison to the other scattering effects which dominate; hence an
unavailability at the present time of an accurate estimate

based on ray methods and its modifications for‘fr- ; radiated from the
open end of a circular waveguide excited by a TMy, mode, is not a
serious problem in the present RCS study. Some typical results for ET
based on Eq. (159) are shown in Figures 24-25 where they are seen to
compare well with those based on the exact Wiener-Hopf solution [12],

provided the 6 and ¢ components of EEO are non-zero,

C. Ray Analysis for [Sz1]

The scattering matrix [Sp1] describes the transformation or
coupling of the incident plane wave field into the waveguide modes as
illustrated in Figure 6. This scattering matrix [Sp1] was defined
earlier in £q. (11). The problem of determining [S21] is the reciprocal
of the problem of determining [S12] (see Figures 6-7). Thus, a
knowledge of [S12], or more specifically Sénm. S;nm» Sonms and Sgnms
and the use of the reciprocity theorem for electromagnetic fields allows
one to calculate the elements Sénm. S;nmo genm» and g@nm of [S21],
and to hence calculate [S21] in terms of [Syp2]. Thus, it can be shown
that the elements of [S71] are simply related to the elements of
[Slg]T; here T denotes the transpose matrix operator. The reciprocity
theorem is applied as follows.
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First consider the geometric plane defined by z=-L inside the
semi-infinite pipe, and let S, denote the area of this waveguide cross
section at z=-L as shown in Figure 26. Then let S denote the surface
area which tightly encapsulates the complete outer (exterior) surface of
the semi-infinite pipe, and also a portion of the inner walls of this
pipe up to the distance z=-L within the pipe. The surface S does not
include the plane at z=-L within the pipe. Let I denote the sphere
at infinity which surrounds the semi-infinite pipe such that S on the
exterior or outer wall of the semi-infinite pipe is connected to the
surface 7 at z » -» as in Figure 26. Next consider the following
two cases. In the first case, the semi-infinite circular

wavequide is excited from within by the modal fields with amplitudes
A

+ + N
nin and an which propagate in the z direction. However, in the

sacond case the same geometry is excited by an external electric field
i ~ 1 i
= gtg + ¢By which for convenience is assumed to be produced by an

™)

elactric test source J, at ﬁb exterior to and in the far zone of the

semi-infinite pipe. 1t is assumed that the spherical wave factor E:%&Sg
. i P
in Ej is suppressed so that Eﬁ represents a locally plane wave part of
- - S BN R =4n.
the field generated by Jua. let Jg = (OEO + ¢E¢)6(|R-§b|)-(jwu), where
¢(|®-Rp|; refers tc Nirac's delta function. The modal fields with
. + k . . =T ro-~ r .
amplitudes Apn and By, radiate the fields Eqn =Egpp® +Egnm¢ from the
i
open end of the pipe in the first case. Likewise the field £ which

is locally plane at the open end of the pipe launches the modal fields

with amplitudes Aﬁm

case, As shown in detail in Appendix C, nne can apply the reciprocity

and B;m within the sami-infinite pipe in the second
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the reciprocity theorem.

107

e




_ o )
theorem to the pair of “iclds ?ﬂm and £ within the reginn V hounded by
S, S5g 4and I, and tren enforce the radiation condicsion on T, as well as
the boundary cundition on S (e.q., tangentia® electric field vanishes on

the perfectly conducting surface S). This yieids tre required moaal

01 s A- R~ e r .
amolitudes Anm and ?nn in terms of £ (related to le?]) as follows:

1

P U -3 P kR
A- = A8y e el Tre (Rp JLRp 7P A (164)
i 20t ¢! x h' . 7 ds Jou
nti < nn nin
._)()
PV S BN s ikR
a- = (%5 + by ETm{Rp)Rpue? P 4y (165)
nm r e xh <3 Juwu
20 é’ g X Moy = 2 88 I
0

Here, the subscripts TE and TM in tqs. (164)-(165) denote that ?;E is
ra‘ttated by A;n alone, any f?m is radiated by B;m alnne, respectively.
ine radiated fields for E;E and f?m have been shown in Section (3).

Boeause of the aorwalization factor Nnm and N;m introduced in Table 1,

it is noticed ihot

() -
1 [ eqn <« My = zds =1 (166)
2 S

Tne elements of [Sp1] may e easily obtained, hy inuspection, from

Fas. {11)-(12) and (164)-(165) respectively,
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Figure 27 illustrates an example for the coupling into the circular

wavaguide due to a unit plane wave incident on axis with electric field
polarized in the } direction. It is noted that only TEyy and TMy,, modes
yield non-vanishing radiated fields in the axial (0=0) direction, thus
only TEyp and TMyn modes can be coupled into the circular wavequide for
the configuration of Figure 27. The total transverse electric fields
evaluated on x {or y) axis are then reduced to only Es (or E,), bacause
all the coupled fields of Figure 27 possess a (S?; z) - type of
variations. Figure 28 illustrates the total transverse electric fields

on x {or y) axis at various z=-L inside the circular wavequide (with

ka=35) due to a unit plane wave incident on axis as shown in Figure 27,

D. Ray Analysis for [Ss2]

The scattering matrix [Sp2] is a modal reflection coefficient
matrix which is associated with the interaction shown in Figure 7 which
occurs at the open front end (or z=0). This matrix [Spp] was defined
earlier in Eqs. (13)-(14). The order of the sub-matrix elements of
[S22]; i.e., of [R:E ?rpge], and [R:ﬁ ?rpgh], ara found by employing the
UTD in the following manner. As before, the equivalent ray cone
corresponding to the modes with amplitudes A;q and R;q which are
incident on the circular edge at the opening of the semi-infinite quide
make an angle Ggq and Spq, with the walls, respectively (see Figure
29). Then from UTD considerations, each of these rays diffracts back

into the waveguide region at any angle ¢ with the walls, FExcent for a

mode near cutoff, the angle ¢ will he far fron any incident or
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reflection shadow boundary that is associated with the cone of incident
rays at the edge. One may thus define equivalent magnetic and magnetic
dipole edge currents of strength M and Myq, respectively, on the circular
rim (or edge) whicn generate the same diffracted fields within the
wavequide, but near the edge, as those produced by the incident ray
cone. Unlike the equivalent magnetic and elactric edge currents shown
in Section (B) which radiate into free space, the equivalent magnetic
and magnetic dipole currents mentioned ahove radiate within the quide;
i.2., in the presence of the perfectly-conducting waveguide walls,
Ffonsequently the equivalent electric edge current for the exterior field
calculation is now replaced by the equivalent magnetic dipole edge
current My for calculating the field in the interior wavequide region.
Therafcre, cace fmst be exercised in defining these equivalent currents
wnich radiate into the waveguide region. Tt can be shown that the
graaral form of M is the same as in Eq. (36) except that a factor of
L/2 must be included in the definition of this current and also for My
toy dcconnt properly for the nresence of the perfectly-conducting
wavogquide walls 28,297 when calculating the field in the interior
wavequide reginn,  Specifically, the equivalent magnetic current is

given by,

- A~ nc . -
Voo oow'iy e o) . Lo, [Br, Lo oM 7
MO ) = = Mcgar © @) > j% Dpled 5 8, = 5 (167)

ard the equivalent inagnetic dipole current is given by [27,28],

— inc — n
ey e Lo f8r 0 Ds(ay' 5 By =Ty,
MyCoad) =2 0 gy © ) . 3% S - wo 2y . (168)
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where ¢'=8pq or Gﬁq. Clearly one requires y'= §pq or 6, in

Eqs. (167)-(168) corresponding to the angle made by the incident ray
cone with the waveqguide walls., Then the fields radiated into the
waveguide region by the above rim currents may be expressed in teras of
modes in the usual manner by simply invoking the reciprocity theoren to

find which modes are excited by the source [20], i.e., by tho rim

current, Since one is interested in calculating the amplitudes A;

or Bﬁm of the reflected TEnm or TMnm modes, respectively, it therefore

follows from physical considerations that one must require ¢ = &y, or
6;m in Eqs. (167)-(168) for these cases, hased on the aforementioned
ray-mode equivalence. Thus, one must require that ¢ take on the proper
value corresponding to the ray-cone angle &y, or Sam which is

associated with the reflected waveguide mode when employing reciprocity
to find the stren.th of the reflected modes generated by M and My of
Eqs. (167)-(168) via [20]. Without presenting any details, one obtains
the required amplitudes A;m and Bﬁm via the above procedure from which
the elements of [S22] can be directly extracted (by inspection) via

Eq. (13). 1In particular,

hh LT o o '
R - f‘lm[h:“n.M(G;"n,aj')q) + h'znm-M ((Skln.%_rl)]d’l . (169)
n; e’ h! .
nn;pq 2{} epn X Moy * 2 ds
i)
ee oW
nm;pq 2/ Enm xuﬁnm e 2 ds
S
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e o

oh - = .
p\H y ”’"[hnm-M(‘SnunSpq)Jld’_l_ . (171)
nmipg 2 e X ho .z ds

S

0
hp kb ™ - \ S gd, .
R . Ty M(8pn, 8pq) + hznineM (Spms 8ng) Jd2 (172)
nin;pG (f at N

P 2§] ®am X hnm z ds
0

It is important to note that the integrals over the rim in
Eqs. (169)-(172) can be evaluated in closed form; likewise the
integrals over the guide cross section Sy (at z=0) can also be
evaluatad in closed form (see fq. (166)). FEmploying the orthogonality
properties of the waveguide modes, it can be easily seen that the
numerators of £qs, (169)-(172) vanish when a#n, Thus, the elanents of
S2o1 vanish when p#n. For the dominant mode reqime, it is necessdary to
wodiTy the ahove equivalent rim currents to include the effects of rays
multiply diffracted across the aperture. Taking cognizance of the fact
that the multipie diffractions occur along the reflection boundaries ot
the isteracting rays, it follows that multiple diffraction calculations
must e treated carefully by decomposing the aon-ray optical fields near
tne reflaction boundaries into their ray optical components as done
previously in the calculation of [Sy)] at 6=0. Following a similar
procedure us in Appendix 8 to include all orders of rays multiply
ditfracted across the rim, one can show that the final expression for
Rﬁﬂ;nq which denotes the reflection coefficient of the TEp, mode
that is refiected back into the waveguide when a TEnq made is incident

at 7=0, and whicn is based on Lq, (169), is given by
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= ! ! . D -
faming = Rol1*2(8nme 0q) * s |
v ]
+ AR [l-u (6, &8 ). c . (173)
00 [ 2( nm nq) T+(-1)MAC ‘
where
! . (2), .»
Ry = N?ﬂ, 4g ";, —— Hn (e"q) cos GAQ
Nom L (Prm)
] ] A} A
. [sec (ﬁn_;__“aq) + sec (Sam* Snqyy (174)
2 H(2): (p! )
A = -j ka] t st st 5nq t Spm N ng .
o J(ﬁ" an nq an o an > an 5 H(z)(ETi)
n ‘nq (175)
, ~j(2xa-T) '
Uy (¥, ¥) = (-1 .1 e Brsec ¢ + sec ¢') - (176)
2v7ka
c-=1+1 (38)" /L . (177)
n=1 (38) N+l
D=1+1 (-38)" /1 . (178)
n=1 (-38) n+l
and
~j(2ka-T
R (179)
4/7ka
-j2ka
B = -~ 1 e J . (180)
7

ee
Similarly, the final expression for Rpping, which denotes the
reflection coefficient for the TM,, mode reflected back into the

wavequide when a Tan mode is incident at z=0, is qgiven by
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“ansng T %o [+ vy (g an) 1+(-1)NA-N ) Hen
where

- 2

R =< lng J HA )(p"q) sin Spq 1

0 Nom  Aka J (p. ) SIN Snm cos Sam

n ‘Y

- [sec [fﬂﬂ,%_fﬂﬂ) + sec (Som * nq)) . (182)

eh
Also, the final expression for Rpy;ng, which corresponds to the
reflection coefficient for the TMp, mode which is reflected back into

the wavequide when a TEnq mode is incident at z=0, is given by

eh ,
=t R, i1+ . n v, 183
an;nq tRp Uy (8 Gnq) 1+(-1ﬁiiﬁi J 183)
where
. 2 '
- Nng  dnZg Hé )(an) cos fég
N ¥ ' cos 6
N ' pnm Jn (pnm) EaLL
' ]
r Spin = 6 8am + &
« (sec {1 Nl + sec nm n ] . (184)
(sec (A1) (S nd)]

fne upper siyn "+" in Eq. (183) corresponds to the incident TEngq mode in
the upper row, and reflected TMp, mode in the lower row of Tahle 1. Tne
towar sign "-" in Lq. (183) corresponds to the incident TE,, mode in the

Tower row, Ind reflected TMp, mode in the upper row of Table 1.
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Likewise, the final expression for Rpp;nq, which corresponds to
the reflection coefficient for the TEpy, mode which is reflected back

into the waveguide when a Tan mode is incident at z=0, is given by

he ~ '
R =+ R, [1+u, (6 s . n
nm3nq 1 [ U2 (o nq) 1+(-1)NAD
~ '
£ AR, [leuy(s , 8 )« G ] - (185)
o'l 2'°nm nq 1+(-1)"AC
where
~ . (2)'
R, = Ngq j — n_ ’ Hg fpnq) sin 8
Nom 4o M = Ppp n(pnm)
' v
o [sec (3m = ®nq) 4 gec (Som * Snq)) . (186)
~ H(2) (p ) :
. ' . 5 5
A = -j D Nd" tan &' cot & tan Ong tan Som . (187)
° Hn(zi'(pnq) nm nq N —t tan —=

The upper sign "+" in Eq. (185) corresponds to the incident TMngq mode in
the upper row, and reflected TE,, mode in the lower row of Table 1. The
lTower sign "-" in Eq. (185) corresponds to the incident TMpq mode in the
lower row, and reflected TE,n mode in the upper row of Table 1.
. hh hh ee ee
Plots of the magnitudes of Rij.11, Ro1;01, R11;11, and Rop;n1 in
Eqs. (173)-(182) are shown in Figures 30-31, respectively, as a function

of ka. These UTD based results are also compared with those based on

119

3
!iEé
-
A
/




-—— UTD
——— WIENER -HOPF

!l 0-ll 1 l.llluﬂoo

MAG

(W B ST

-2

]1

[ A I

©
I ARAAR T T SARAR REARR T
1 2 3 4 S 6 7 8 ]
ka
(a)
)
=y 1 ——UTD
3 \ -—=WIENER-HOPF
o’
~
ja
o
€ w
b i
=]
3
o]
-—4"‘.
3

(b)

Figure 30. Magnitude of the self reflection coefficient for a TEnn
mode incident on an open-ended circular waveguide.
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Weinstein's Wiener-Hopf solution to this problem. One observes from
these fiqures that the agreement between the UTD and the exact
Wwiener-Hopf solution for the reflection coefficients is good. It is
noted that Felsen and Yee [19] have obtained the modal reflection
coefficients associated with acoustic modes reflected from the open end

of a semi-infinite acoustically rigid pipe. They [19] also employed ray
methods, and they used a Poisson sum technique to convert the reflected
ray cones into waveguide modes. On the other hand, the ray to mode
conversion for the more general electromagnetic case accomplished in the
presant work involves simply invoking the reciprocity theorem to %
determine which modes are excited by a given source inside the
waveguide; in particular, the sources employed in this work are the
equivalent rim currents. While our procedure may be somewhat less
rigorous than the one in [19] (which employs a Poisson sum technique),
it appears to be simpler and yields results which are also quite i

accurate,

F. Ray Analysis for [Sy]

The scattering matrix [Sp], like [Sp2], is also a reflection

coefficient matrix which is associated with the discontinuity at the

back end, or at z=-lL, as shown in Figure 8. Clearly, the elements of v
[St] depend on the exact nature of the discontinuity at z=-L; as

observed from Figures 1-4, the nature of the discontinuity is different

for the different terminations at z=-L in those figures. Presently, the

following terminations or discontinuities at z=-L are considered;
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namely, an open circuit or open end at z=-L for a finite pipe, a planar
dielectric interface at z=-L in a semi-infinite pipe, a disc-blade
termination in a semi-infinite pipe, and a short circuit or closed end
at z=-L for the semi-infinite as well as the finite length pipe,

respectively.

a) [Sp] for an Open Termination at z=-L

When a finite pipe is open at both ends, it is apparent that [Sy]

is the same as [S»2]. Thus,

[Sp) = [S22] . (188)

b) [Sp] for a Closed Termination at z=-L

As shown in Figure 3, there exists an electric field which is

incident on the termination from the left side or the region (z>-L);

that field is denoted here by E;, where E; may represent a TE or T™M

electric modal field., Then the total electric field £ in the region

z>-L can be expressed as

E=E+ L ¢ B forz>-l . (189)

+
where ¢y (n=1,2,..., = ) denotes the reflection coefficient for the

+
modal field E, which is reflected from the termination at z=-L when the

modal field Et is incident there. 0One needs to solve for the
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coefficients c; in Eq. (189) for obtaining the elements of [Sb] in this

case as follows. 0On the perfectly conducting termination at z=-L, the

following boundary condition must be satisfied; namely,

; x E 0o . (190)

z = <L

+
Now the unknowns ¢, can be determined quite easily from
Eqs. (189)-(190) together with the orthogonality properties of the

waveguide modes; thus,

+ {-1 n=k
¢h = 0 otherwise . (191)

It follows that

(spd = -[1] (192)

where {I] is an identity matrix of order o x =,

c) [Sp] for a Planar Termination at z=-L

As shown in Figure 32, the guide is loaded with a dielectric
material of relative permittivity e, in the region z<-L. The

dielectric interface at z=-L is planar, and perpendicular to the guide

axis. Consider a modal electric field Ek incident upon this
termination at z=-L from the regfon z<-L, then the total electric field

E in the region zg-L within the guide can be expressed as,
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Figure 32, Backscattering from a semi-infinite hollow pipe loaded
with a dielectric material of relative permittivity
er in the region z<-L.
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L<z<0 >
£ = (193)
2 C- E- Z < "L .

H o+ L c* it L <z<0 .
H = (194)

1 ¢ H- z <L .

+ -
Here C,(or C,) denotes the modal reflection (or transmission)

coefficient at the junction z=-L, It is noted that, for -L<z<0,

- + - Fiv. 2z

En = cn (en tegg) e HThm . (195)
_t + _ _ Fjv,. 2z

Hy = ¢n (£ hp + hpz) e nm . (196)

where ey (or By), and &, (or Ry;) denote the transverse and
longitudinal electric (or magnetic) modal fields, respectively, and can
o2 Yound in Table l. ypq can be B;m or Bpm to denote the TE or TM

modes, For z<-L (in the dielectric region),

atd ~o~ ~ ;j;ﬁmz .

"n T % (en * enz) ¢ (197)

ro ~ ~ *j;ﬁml .

AL R hnz) @ (198)
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wrere the expressions for e,, h,, e,;, and ﬂ;z can be found from
“able 1 except that the free space permittivity e has to be replaced by
€ er. Therefore, k2 are replaced by kZe¢p, and Bnm (or Bpm) by Enm

(or E;m), where

N _ [2 Phm12
Bun = Jﬁ<er - LTF') for TE_ modes.

(199)

o 2 Prmy2
Bam Jk €. - (__:_'!) for TM  modes.

Then, by enforcing the boundary conditions at the dielectric interface

A which require that 2 x T and z x H are continuous at z=-L, and employing

the orthogonality prqperties of the waveguide modes, one obtains,

~hh '

R = Bam - Bnm , (200)
Bam * Bom

e ~

Rn:‘nm = Pom - €rfnm . (201)
Bam * € Bnm

A11 the other elements of [Sy] vanish identically. Thus, [Sp] is

reduced to a diagonal matrix, i.e.,

B 7]
Fr 1 (0]
(s, -
o1 @)
i | exa . (202)

e e i




d) [Sp] for a Disc-Blade Termination at z=-L

As shown in Figure 1, the planar disc-blade discontinuity comprises
of N blades, placed with an azimuthal periodicity around a central disc.
The blades of length ¢ and the disc of radius b are assumed to be
perfectly conducting and to lie in the plane z=-L., Fach blade spans an
angle y, and the distance (a-c) between the blades and the cylinder is
assumed to be small., For a sufficiently large number of blades, the
surface current density Jy induced on the composite disc-blade geometry

may be given to a first approximation by

~

Jp ~ 2z xHyg , on the disc and blades only, (203)

in which Hg is the sum of all the propagating TE,y and TMap modes
which are incident on the disc-blade discontinuity. An expression for
Tﬁfis provided in Eq. (7). The approximation in Eq. (203) corresponds
to the geometrical optics approximation for the current, The fields
generated by Jp propagate in the +; direction; for propagation in the
+; direction, these fields constitute the reflected waveguide modes in
the region 0>z>-L, and for the -; directed propagation case, they
constitute the transmitted waveguide modes in the region z<-L. Once
again, as in the calculation of the elements of [Sp2], the reflected and
transmitted waveguide modes generated by Jy may be readily calculated
by invoking the reciprocity theorem to determine which modes will be
excited by a given source within the guide [20]. Thus, the amplitudes
A;m and B;m of the TEqm and TMpy modes, respectively, which are

reflected from the disc-blade discontinuity are found to be [20]
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which are found as follows.

e xw

_Sq4 nm

N2

Sq denotes the surface area of the disc-blade geometry.

of [SpJwxe Can be directly obtained from Eqs. (204)-(205),

ds

B

nm
(o}

[Ie

_S4 €m X

ds

ds

s,

[Ie

= _ 5S¢ nm

ds

ds

T

nm
0

z ds
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~he e Xxh «zds

R .. 54 %am X "pq . (209)
nm;pq
I o .
e xh 2z ds
S0 nm nm h

It is noted that the integrals in the latter equations can be evaluated
in closed form.

Some interesting effects are observed in the reflection from a
rotationally symmetric object inside a circular waveguide. It has been M
shown [34] that if an object is rotating about the axis of the waveguide
and has periodic characteristics in the azimuthal direction with period
2n/N (N: integer), an incident TEpq (or ™pq) mode can only excite
reflected TEpy (or TMy,) modes where n=p or n=gNtp (2: integer).
Furthermore, only the reflected modes withe n=gN+p, but not n=p, contain
information on the modulation of the reflected wave due to the rotation
of the periodic object. Therefore, if the disc-blade model in Figure 1
centains a large number of fan blades (N), as is usually the case in a
true jet intake, and if the waveguide is not big enough to propagate the
high-order modes with mode number n=gNtp, then one will generally not be
able to observe any modulation effect in the reflected wave.

In the configuration of Figure 2 where the stator and the rotor are
both taken into account, Eqs. (206)-(209) still apply except that the
area of integration S4 appearing in the numerators is now a function of
the relative position of the stator and rotor. When the geometry of the

rotor-stator combination is no longer symmetric, all possible modes can

be reflected corresponding to an incident mode, However, the conversion

of an incident mode into a different reflected mode is usually small ¢

130




"Illlllllll!llll'l-lIllllIlllllllll!lllllllllllllllIllllllIllllllllllllllllIllllll-lllllllllllII!ul-l--—H-q‘!

compared with the self reflection coefficient, The modulation effects
are mostly due to the change in the total area covered by the rotor-
stator combination.

Finally, the matrix [P] which is associated with the phase delay in

the propagationipath L can be conveniently written as

-j8a.L
e 301" . 0 - 0 - 0 --
N
| N
N\ '
| -ig' L
0 e I8 0 0
| AN
AN
P = | N
2 | -§Bn,L . (210)
0 0 e " 017 0
| AN
[ N, L
b 0 0 e JPm
~N
AN
\ noxoo
1
|
|
4
b
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SECTION 4
NUMERICAL RESULTS AND SUMMARY FOR PART I

Numerical results for the on-axis RCS of the intake blade geometry
in Figure 1, which are based on the MSM, in conjunction with the UTD
together with its modifications at caustics, are shown in Figure 33 as a

function of a/A , with the length L (from the intake opening to the

blades) being kept such that L=10a. A1l of the RCS plots here are
normalized to waZ , The numher of blades, N=40 for the plot in Figure
33, The mean RCS le{e1 in Figure 33 is basically controlled by the
blade scattering, andvthe ripple structure results from the interference
between the hlade backscatter and the backscatter from the intake
opening. The effect of evanescent (non-propagating) modes in the intake
is ignored in these calculations because it is expected to be

negligiole as long as L does not become extremely small (or approach
zero). The scattering matrices in the MSM become fairly simple in this
case because first, they are of finite order having neglected the
evanescent modes, and secondly, there are only a few elements involved
for the range of a/X values being considered, since only the first few
propagating modes exist in this case., It is interesting to compare the
intake-blade RCS results of Figure 33 with the RCS of two other related

geometries as shown in Figures 3 and 4, respectively., Thus, Figure 34
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Figure 33, On-axis RCS (normalized to ma2) of the simplified jet
intake model with N blades attached to a circular disc
as shown in Fiqure 1.
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Figure 34, On-axis RCS (normalized to mal) of a hollow, perfectly

conducting finite length circular cylinder open at the
front end and closed (shorted) at the back end.
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illustrates the on-axis RCS of a hollow, perfectly-conducting cylinder
of finite length L with the front end open (as in the intake case) and
with the back end closed {or shorted) with a perfectly-conducting planar
disk. Likewise, Figure 35 illustrates the on-axis RCS of the same
finite length hollow cylinder as in Figure 4 except that it is now open
at both ends. The RCS in Figures 34-35 have also been calculated via
the MSM used in conjunction with the UTD. Clearly, as one would expect,
the mean RCS level is higher for the finite cylinder with a closed
‘snorted) pack end (Figure 3) than for the same cylinder with both ends
open (Figure 4). In the case of the finite cylinder with a closed back
end (Figure 3), the mean RCS level is controlled by the backscatter from
the closed end, and the ripple structure again results primarily from
the interference between the backscatter from the closed back end and
the backscatter from the open front end. In contrast, the mean RCS in
Figure 35 of the finite length hollow cylinder open at both ends is
controlled primarily by the backscatter from the open front end.
However, the ripple structure is primarily the result of interference
between the backscatter from the open front end and the backscatter
resuiting from the wave coupiing from the internal to the external
regions of the hollow pipe, and vice versa.

It is important to note that only the TEjy and TMj, modes inside a
circular waveguide yield non-vanishing radiated fields in the axial
(0=0) direction. Therefore, from the foregoing discussions of the
scattering matrix [Sp1] in Section 3, only the TEyy, and TMy, modes can

be induced inside the circular waveguide of Figures 1-3 when a plane
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wave is incident in the axial (-;) direction. Furthermore, the TM,
modes yield very low-level fields in the direction 8=0 and the mode
conversion between the TEyy and TMyy modes are small in the
discontinuity at z=-L; for practical purposes, only the TEj, modes need
to be considered in the calculations of the on-axis backscattered fields
of Figures 1-3. On the other hand, the T™Mjy modes may become important
for calculating the RCS for the problem in Figure 4 where these modes
are coupled from the exterior region to the interior at z=-L (and vice
versa). These TMj, modes have been ignored in the calculations leading ‘
to Figure 35 and could possibly account for only a part of the almost 3 1
dB shift between the results based on (MSM-UTD with modifications) and 1
the independent momeq}-method calculations [35] in Figure 35 for the
following reason., It is expected that the mean RCS level in Figure 35

should correspond to the field backscattered from the open front end as

accurately predicted via the (MSM-UTD with modifications) as shown

earlier in Figure 19; consequently, the effect of the TMj, modes would

have to virtually be almost in phase with the backscatter from the open
end to yield a better agreement with the moment method solution by
providing a constant shift in the mean RCS level, but such an in-phase
behavior of the TMy, modes may not actually take place over the entire
range of a/Xx values considered in Figure 35 and will therefore not
completely explain the puzzling approximate 3 dR shift between the two
independent calculations.

The on-axis solutions of Figures 33-34 can indeed be extended to 2

very large a/). As an example, which can be readily seen from Appendix
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R, only 11 modes (i.e., TE1) through TEj 31), instead of all the 320
modes, need be included when ka=35,2187.

Some additional interesting preliminary results of the work are
shown in Figqures 36-41. Figures 36-37 indicate the UTD-MSM based RCS
calculations for a finite or semi-infinite hollow metallic circular
cylinder open at the front end and closed (shorted) at the termination.
These UTD-MSM based calculations are shown to agree very well with
experimental results obtained from elsewhere [13,29].

The computational speed can be examined from Table 2.

TABLE 2
NUMBER OF MODES INCLUDED VERSUS CPU TIME REQUIRED

Approximate CPU time required on a VAX-11/780
computer system to generate the numerical

No. of modes included
values of the RCS for the problems in

Figures 1-4 and for a given aspect angle (8)

5 0.13 sec
10 0.57 sec
15 1.50 sec
20 3.01 sec
25 6.66 sec
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Because the required CPU time increases sharply as one increases the
number of modes, some measures must be taken to extend the solution for
large values ka. To obtain the RCS at any desired angle, it is possible
for the sake of computational efficiency to discard the modes which
radiate weakly in that direction. A weak radiated field also means a
weak induced field in the waveguide via reciprocity. It is noted that
the distance L between the open end and the termination of the waveguide
is so chosen that all the evanescent modes can be negligible.

Figures 39-41 indicate the UTD-MSM based calculations for the
modulation envelope of both the the off-axis and the on-axis RCS for the
configuration in Figure 1, but with two identical sets of planar blades
which are physically located at the‘same position inside the circular
intake duct. One set of these blades is kept fixed as a stator, while
the other set is allowed to rotate {i.e., it forms a rotor). The RCS
modulation envelope then indicates the extent of the change in RCS
resulting from the motion of the rotor relative to the stator. Another
example is shown in Figure 2 to illustrate the RCS of a semi-infinite
hollow circular cylinder with a rotor-stator combination inside in which
the stator and rotor blades are non-identical. This configuration which
is shown in Figure 2 resembles most jet intake geometries., Consider the
case where the stator and the rotor are assumed to have 60 and 30
blades, and the various angular widths for the stator and the rotor are
2° and 8°, respectively. The stator blades are connected to the intake
wall, the length of the rotor blades is ¢=0.9a, and the radius of the

center disk is assumed to he b=0,2a, Since the relative position of the
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Figure 36, RCS (normalized to wmaZ) of a finite length hollow
metallic circular cylinder open at one end but
closed at the other end.
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Figure 33.
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rotor blades with reference to the stator blades is a periodic function

i of time (t) with a period T, the reflection coefficient matrix [Sp]

| associated with that composite rotor-stator blade structure

‘ discontinuity, and also, the total backscattered field Ebs has the same
i periodic property. The angular frequencies present in the backscattered
electric field fbs are obtained in this case. Frequencies other than
those corresponding to the one associated with the incident wave will be
present in ?bS because of blade rotation. In particular, these
additional angular frequencies in ?bs resulting from blade rotation
(relative to the stator) comprise the so-called modulation frequencies,

and they give rise to the RCS modulation frequency spectrum. A short

analysis leading to the determination of the RCS modulation frequencies

is provided next as in [30]. Let
S Juwot
fb =I(t) e . (211)

where wy is the angular frequency of the incident plane wave and T(t)

is a complex function of t with period T, It can be seen that
T =6° . (212)

where wpr is the angular velocity with which the blades rotate,

T(t) is a periodic function; therefore, it can be represented by

a summation of its Fourier series,

- j2mt /T
I(t)= § F(m)e .

Moo
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If |F(m)|~0, for |m|>Ny/2, then Eq. (213) can be adequately

approximated by

No/2-1
j2mmt /T
T(t) = ] F(m)e
m=-No/2
No-1 j2m(m<No/2)t/T
= 07 Flm-Ny/2) e ° .
m=0
Let
o JmNgt/T
I(t) e = T1(t) .
and
F(m-NO/Z) =Fi(m) .
Then
_ No~1 j2mmt /T
Tif(t) = )} Fi(m) e .
m=0

The inverse transform is

_ No-1 _ -j2mmt /T
N'a tNo/T=0

The Fi(m) in Eq. (218) can be obtained via the Fast Fourier Transform
(FFT) algorithm applied to the RHS of Eq. (218). From Eqs. (211)-(213),

we have

S Tk

m=e~oco
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The power density spectrum of Eq. (219) is defined by

To = il(w-wp)-2m/TIt |2
W) = 1 F dt
_ 2 Ty sin[(weug)-2em/TIT
15 mete T —TaaymT
. E Fx(n') sin[{w-ug)~2mm'/T]T, . (220)
m'=<o (w-wg)-2m' /1
AS TO + @,
S(wy =2r  § [F(m)|2 s[(w-wg)-20m/T] . (221)

T 00

S
Thus, the angular frequencies or spectral lines of Eb are located at
w=ug + 2m/T = wg + meyy ; m=0, 1, 2, ..., . (222)

Clearly mwy represent the modulation frequency spectrum for Ibs. The
power density spectral lines for the backscattered field at 6=40° (see
Figure 2 for 0) are shown in Figure 42 where it is seen that the
results for the 8 and $ polarized returns are almost identical for the
special case of 0=40°,

Additional results for the modulation frequency spectra are shown
for various combinations of M rotor blades and N stator blades, and for
different 0, and also different ka values in Figures 43-46. The

dimensions of the rotor and stator blades as well as of the central disc
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are also shown in these figures. The various angular widths for the
stator vane and the rotor blade are all kept at 2° and 8°, respectively,
Note that the period T depends on the rotor-stator combination, and
except for Figure 42, is not necessarily given by Eq. (212). It is seen
frem these RCS modulation spectra that their amplitudes in certain cases
(particularly for certain combinations of the number of rotor and stator
blades) can be significant. Clearly, a more realistic rotor-stator
model would be worth investigating to obtain a more realistic RCS
modulation spectrum of jet inlet configurations. This task is not
simple, but it is hoped that based on some of the results of the initial
study on the RCS of a simplied jet inlet model reported here, it is a
topic which is certqinly worth pursuing in the future. The accuracy of
the RCS analysis of the simplified models chosen in Figures 1-4 is based
in turn on the good accuracy obtained in the UTD ray solutions developed
here for the elements of the various scattering matrices in the MSM
based formulation of these problems. The good accuracy of the UTD ray
solutions and their modifications at caustics is established in Section
3 where the results hased on the UTD are compared against results

based on available exact (but more cumbersome) solutions in some cases
and based on measurements in other cases. It is also noted that the MSM
has proved to be quite accurate wherever it has been employed elsewhere
for solving various other scattering problems {10]; consequently the
present UTD-MSM analysis is also expected to yield the same type of
accuracy in dealing with the problems in Figures 1-4. An advantage of

the present UTD ray representation for the elements of the scattering
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(a) e8-polarization

Power density frequency spectrum of the polarized
backscattered electric field for the problem in

Figure 2 with 6=40°, ka=3.8, number of stator vanes=60,
number of rotor blades=30, disc radius b=0.23, and the
blade leagth c=0.9a.
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(b) ¢-polarization h

Figure 42, (continued)
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Figure 43, Power density frequency spectrum of the backscattered

electric field for the problem in Figure 2 with
8=0°, ka=3.8, number of stator vanes =40, number
of rotor blades=40, and disc radius, b=0.2a. The
blade length, c¢c=0.9a.
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Figure 43, (continued)
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Figure 44, Power density frequency spectrum of the backscattered
electric field for the problem in Figure 2 with
0=0°, ka=3.8, number of stator vanes =20, number
of rotor blades=40, and dis¢ radius, b=0.2a. The
blade length, c=0.9a.
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Figure 45, Power density frequency spectrum of the backscattered

electric field for the problem in Figure 2 with
8=0°, ka=5, number of stator vanes=20, number

of rotor blades=40, and disc radius, b=0.2a. The
blade length, c¢=0.9a,
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Figure 46, Power density frequency spectrum of the backscattered

electric field far the problem in Figure 2 with
0=0°, ka=5, number of stator vanes=8, number of
rotor blades=40, and disc radius, b=0,2a, The
blade length, ¢=0.9a.
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matrices required in the MSM is that they are not only simple (in
comparison to those available from the exact Wiener-Hopf solution), and
quite accurate, but they also yield a physical insight into the dominant
scattering mechanisms present in the problems of Figures 1-4. The
latter aspect of the UTD ray analysis offers the potential for
controlling the RCS.

While it would be worthwhile extending the present work to deal
with more realistic stator-rotor models, it is also worthwhile as a part
of future research to study the effects on the RCS of changing the
cross-sectional shapes of the inlet duct, e.g., from the present
circular form to rectangular, skewed rectangular, semi-circular, or
elliptical forms. In addition, it is also of interest to consider the
continuous changes in the duct cross-section along the length of the
inlet duct, e.g., from rectangular to circular, or a semi-circular to a
circular one with a bend., The latter cross-sectional shapes and changes
in the cross-section along the length of the inlet duct commonly occur
in practice. A related study, which has been under investigation by
Volakis [36], is on estimating the RCS of a jet intake mounted on a
convex surface. All of the above mentioned problems are difficult,
challenging, and worthy of future investigation in the area of RCS

studies.
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PART 11

CANONICAL RESPONSE WAVEFORMS OF FINITE AND OPEN
LOADED CIRCULAR WAVEGUIDES

Chun-Yue Lai

David L. Moffatt




SECTION 1

PRELIMINARY DISCUSSION FOR PART 11

The interaction of electromagnetic waves with the jet intake and
exhaust configurations on modern aerospace vehicles are important
scattering mechanisms. While both cross section modification effects
have peen measured, a firm understanding of the scattering mechanisms
has not followed. The purpose of this report is to first demonstrate
the simplicity and diagnostic potential of the canonical response wave-
forms for a cavity structure and then to postulate an approximate time
domair derived model to predict the scattering from circular waveguide \
geometries which is suitable for extension to more compiex cavities.

This report is primarily concerned with the spectral rather than
the spatial variation of the electromagnetic scattering properties of
finite and semi-infinite circular waveguides at guide diameters less
than 3.0 or 4.0 wavelengths. Consequentiy, the interrogating signal

waveforms are limited to axial incidence.
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In the second section of this report, the exact low frequency and
the asymptotic high frequency spectral solutions to an unloaded semi-
infinite open circular waveguide are summarized. The analytical impulse
response waveform is also discussed.

THe third section centers upon the backscatter from finite circular
waveguides with open br short rear terminations. The analytical model
chosen is the finite circular waveguide shown in Figure 47, The
waveguide has a diameter 2a and a length L, The waveguide walls are
assumed to be infinitely thin and perfectly conducting. Consider first
the case of a plane electromagnetic wave with shock type time dependence
axially incident on the waveguide. Regardless of the observation point,
the time-dependent scattered waveform must be the same as thet which
would be obtained from an open circular waveguide of the same dimension
until such time when the incident wavefront travels to the rear of the
guide and the subsequent perturbation then reaches the observer. It is
clear therefore that some short time portion of the canonical response
waveforms of the finite circular waveguide can be taken from those for
an open or semi-infinite circular waveguide, Simply stated, the
excitation cannot anticipate the termination of the waveguide. Further-
more, the evanescent and propagating modes initially launched at the
guide rim are independent of the rear termination. Therefore the
initial incident waveguide modes on any postulated internal structure
(e.g., blades) and the subsequent reradiation coupling also come from a
solution for the open circular waveguide. This brief discussion
illustrates one reason why a time domain analysis, where a single real

time-dependent waveform of relatively simple shape sums up the
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Figure 47, Finite circular waveguide, L=10a,




scattering properties of an object at all frequencies, is felt to be a
fundamental approach.

In the fourth section of this report, the effects of internal
loading on open circular waveguides are studie!. The different kinds of
loading include short, disc and blade structures (2 and 40 blades).

They are compared to the case of a hollow semi-infinite circular wave-
guide. This involves the joining of a high frequency and a low
frequency spectrum through a rational function fit, thereby enabling the
time domain responses to be found. Though there is no exact way to
prove the correctness of the fit, the time domain waveforms produced
thereby do satisfy both physical and moment conditions.

In the fifth section, the poles of the open circular wavequide are
explored and some preliminary results are presented. They are based
both on results in the previous sections and on a proposed characteris-
:9¢ equation of the open circular wavequide,

An appendix discusses the implications of the research in this
report on the recognition by active radar sensors of targets with cavity

structures with resonant dimension apertures.
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SECTION 2
SEMI-INFINITE OPEN CIRCULAR WAVEGUIDE

The formulas and results presented in this section are partially
abstracted from a report by Johnson and Moffatt [12] and from a paper
[41] by the same authors, A relatively complete list of significant
references to the Wiener-Hopf solution is given in the report. The open
circular waveguide and the coordinate system are shown in Figure 48,
With the unfortunate e-iWt time convention, the incident and scattered

fields are given respectively as

Bo- efkr el 4 gl (223)
r 8 ¢
TS _  e-ikr - S ) s . 224
£ - (6EG + ¢E,) (224)
where
s i
Eu SBO SO¢ Ee
e = i (225)
>
E¢ S¢e S¢¢ E¢ )
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Figure 48, Coordinate system for Wiener-Hopf solution to

semi-infinite cylinder.
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The components of the far field scattering matrix in Equation (225) are

L]

- i Jp(kasing;) Jn(kasingg)
S Z - 23 € COS n n 1 n S .
06 X ,.Zo n % STnB1L4(kcos87) SinBgLs (KCoS6g)
2
(1-cos8i)(l-cos0s) _ fp (226)
2(cos6j+cosfs) l_fg
® Jd'({kasin®, J! in®
S . 2 5 e cos nb n( asin 1) n(kasm s)
¢6  Kk{T+cosB;)(1+cos8g) p=p S Mi(Kcos87) My (KCosBg)

r 2
(1+cos8i)(1+cos6g) + fn , (227)
2(cos0i+cosfg) l_fg
® d_(kasin® J (kasino, f
S = 4i 5 sin ng “( 5) “( ‘) . R
8  X(T+cos®;) p=1 S sinBgLy(kcoss) Mi(kcostj) 1-f2
n
(228)
' N N
; _ " § $10 ng Jn(kasvnes) Jn(kasvnei) fn ’
¢0  X(T+cosBg) po) S My({kcos6s) sin0jly(kcosdj) 1;?%
(229)
Where
6§ = m i3 assumed
3
Can 20
n 2kaﬁ+tE;
and
1 n=0
€y = (231)
2 n=1,2,3,., .
168




The exact defining integrals for the Wiener-Hopf factorization
functions (L4(k), My(k) in Equation (230)*) are given in Johnson and
Moffatt [12]. 1In the same reference these functions are evaluated
exactly (diameter/wavelength less than 3.0) using numerical integration.

For axial incidence (8;=0,n=1) the infinite summations for the

polarization matrix coefficients disappear and

21acos(¢g)Jdy(kasinbg) Lai(k)

S =
%0 seg SO, fcoso T(2kaM )L, (7)) o)
s | - 4ikaZcos (4 )d1 (kasingg) My(k)
bt 610 [l+cosGS]M+(kcoseS)[(2kaM+(k))2-(L+(k))2] ,  (233)
S . idasin(¢s)d1(kasindg)Ly(k)
) :
¢ o120 sin(e, )L, (kcose ) [(2ka, (k))2-(L,(k))Z] » (234)
and
So | - 41k%a3sin (05 )01 (kasinag) (M, (k)2 .
0
¢ ;= [1+coses]M+(kcoses)L+(k)[(2kaM+(k))2-(L+(k))2]

(235)

* more properly written as Li(k,n), My (k,n).




For axial backscatter (6g=0)

= kia s
[(2kaM, (k))2-(L,(k))?]

Soe =S

o |
8=05=0 8i=65=0
(236)

and, of course, the cross-gilarized terms are zero. BRowman [8] has

given an asymptotic result for the case of axial backscatter which

yields an impulse response approximation through inverse Laplace

transform

= -a 8(¢) - v ()"0 u(t-2mt )
frle) == ) "%?'753 mzl 372 >
mC T,
a E (jsm+tz-(-l?]u(2mto-t) ,
Zn By m=l ﬁ3/2
2/Zmi ot (237)

where to=3/c is the transit time for the guide radius and the spatial

propagation and delay have been suppressed. Beyond the reflected

impulse the response consists of alternating (sign) paired causal and

non-causal contributions delayed by integer multiples of the transit

time for the quide diameter, A sketch of the response of Equation

(237) is shown in Figure 49, While the peaks predicted are

singularities, the attenuation is severe because of the weighting and

oniy the first few terms contribute significantly. A comparison of the

oot R

170




4.

n

L

B "
-

IMPULSE RESPONSE
2.

i

o I A | T

4.
RADIUS TRANSITYTIME
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] impulse response of the open circular waveguide predicted using Fourier
synthesis of the exact results in Equation (236) and Bowman's [8]
asymptotic approximation is reproduced from the paper by Johnson and
Moffatt [41] in Figure 50. Axial backscatter cross sections were |
also compared and are reproduced in Figure 51, The asymptotic :
L frequency domain results of Bowman (1970) were also obtained by Chuang,

Liang and Lee [11]*, The impulse response comparisons in Figure 50

show that the major failure of the asymptotic waveform occurs between

delays of 2 to 6 quide radii transit times. This translates into a
major cross section error of roughly 8.0 dB at a quide diameter of 0,59
wavelengths which is the cutoff wavelength of the first propagating mode

(TE11). Progressively, as the guide diameter increases, the peaks of the

;
i
H
¥
£
v
¢

axial backscatter cross section occur at essentially the TE mode cutoffs

; (TEy1, TE21, TEpy, etc.) and the cross section nulls are slightly in
advance (lower D/)) of the cutoffs for the TM modes (TMg1, TM11, TMpy

etc.). From Figure 51, the asymptotic result is a reasonable

approximation for guide diameters greater than one and an excellent one

for quide diameters greater than two.

The simplicity of the time domain waveforms is emphasized. DNespite

R A=y ety

the complexities of the Wiener-Hopf solution the time domain waveforms §
in Figures 49 and 50 are extremely simple. The noncausality of the
odd order summation in Equation (237) precludes diract utilization of

this model for terminated quides and guides with internal structures.

*The exact results of Chuang, Liang and Lee [11] were in error, as

reported in a corrections letter, Chuang et al. [39].
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If the approximation

O I L

® . m+1 m

-a g ) [1-(-1) Ju(2mto-t)

2t 7t =l 63/2 |
| 2T T |
® 1

a3 " 0 (201 to)-u(t-2nt )]

Zn Ty m=1 m3/2

2/ Tt (238)

is made then the waveforms are identical for t > 2(m-1)ty (m is odd) but
a small step discontinuity results at t = 2(m-1)ty. The asymptotic
waveforms in Figures 49 and 50 have been terminated at zero but

actually are nonzero for negative time and hence noncausal. The

addition of a real axis pole, with high damping, to remove the step

discontinuity in Equation (238) would appear to be feasible. Instead

of the correction of Equation (238), we have

w m+1 m -a(t-2(m-1)tgy)
; - - (3) [1-(-1) ] (1-e -2 (m-
g (t) ?%—753 mzl T ) [u(t 2(m-1)t )
m 2/2mt -t -u(t-tho)]_
(239)

where gc(t) replaces the odd order summation in Equation (237). The
resulting time waveform with the modification of Fquation (239) is
shown in Figure 52, It is found that when oto is of the order of 10,
the asymptotic results in the frequency domain are not altered

] 5 significantly.

2 g A comparison was made of the radar cross section of the circular

guide as given by Bowman [8) with that using the modification of
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Equation (239). The radar cross section according to Bowman is

(converted to edWt time convention)

it/ .\m_-j2mk 2
o~ |1+ T )i
2 . /ka =1 3/2
ma mKa m m / (240)

The radar cross section with the modification of Equation (239) is

-jn/ ® -9
4 (-j)me j2mka

g ~ 1 + e
;;?. V/nka m=2 m3/2

m even

M -j?2mka
+ (-3) e [I-Erfc(j'jZka)
m=1 3,2
m Yjnka
m odd
2
-j2mka~2at
-8 1-Erfc(j/2jka+2atoq
/T VJEa"‘ato

(241)

In Table 3, these asymptotic forms are compared to the exact solution
given by Johnson and Moffatt [12]. It is evident from Table 2-1 that
for D/A > 0.6, the cross sections corresponding to causal and noncausal
time waveforms are equally good approximations of the exact solution.
Asymptotic results obtained from a ray optical approximation,
Bowman [8], are identical to Equation (237) up to m=2 but thereafter

differ in the weights of the terms. The asymptotic result in Figure 50
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Equation (239). The radar cross section according to Bowman is

(converted to elwt time convention)

'j"/ @ . -
5 _ L+ 4 (_J)me jomka 2

7l  Vaka  m=l 3/2
(240)

The radar cross section with the modification of Equation (239) is

'j / oo -3
/4 (-j)me j2mka

[+ ~ 1 + e z
;2- /ka m=2 m3/2
m even
) » . -j2mka
vy () e [I-Erfc(j“jZka)
m=l 3/2
m /JnEa
m odd
2
"jzmka-z dto
-e [1-Erfc(j/2jka+2ato)] {
/v /Jka+ot,

(241)

In Table 3, these asymptotic forms are compared to the exact solution
given by Johnson and Moffatt [12]. It is evident from Table 2-1 that
for D/A > 0.6, the cross sections corresponding to causal and noncausal
time waveforms are equally good approximations of the exact solution.
Asymptotic results obtained from a ray optical approximation,
Bowman [8], are identical to Equation (237) up to m=2 but thereafter

differ in the weights of the terms. The asymptotic result in Figure 50
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COMPARISON OF RADAR CROSS SECTION (dR) OF EXACT SOLUTION
(JOHNSON), ASYMPTOTIC SOLUTION (BOWMAN) AND MODIFIED

TABLE 3

ASYMPTOTIC SOLUTION (Eqn. 2-19, MOFFATT)

D/A Johnson
0.100 -9.458848
0.110 -8.520934
0.120 ~-7.646716
0.130 -6.824223
0.140 -6.0455%25
0.150 -5.305766
0.160 ~4,595446
0.170 -3.913079
0.180 -3.255218
0.190 -2.617804
0.200 -2.001531
0.210 -1.408495
0.220 ~0.833483
0.230 -~0.276990
0.240 0.264939
0.250 0.792181
0.260 1.301408
0.270 1.795182
0.280 2,270724
0.290 2,731840
0.300 3.174628
0.310 -, 3.627388
0.320 4.064384
0.330 4.490535
0.340 4.902714
0.350 5.301191
0.360 5.686905
0.370 6.056279
0.380 6.408279
0.390 6.744378
0.400 7.066416
0.410 7.288048
0.420 7.530067
0.430 7.786634
0.440 8.061458
0.450 8.346395
0.460 8.636331
0.470 8.927008
0.460 9,213129
0.490 9.493250
0.500 9.743763
0.510 9.976593
0.520 10.161530
0.530 10.306625
0.540 10,395186
0.550 10.413555
0.560 10.367692
0.570 10.254469
0.580 9.873226
0.590 8.092514
0.600 6.002594
0.610 4,758259
0.620 3.745943
0.630 2,918265
0.640 2.248425
0.650 1.711760
0.660 1,291267
0.670 0.976372
0.680 0.755607
0.690 0.615962
0.700 0.557735
0.710 5.867754
0.720 5.615556
178
s . i P

Bowman

3.071432
3.179154
3.244816
3.336831
3.476034
3.585063
3.642307
3.740452
3.907654
4.030650
4.074891
4.203629

Moffatt

2.880305
3.006446
3.090103
3.203558
3.363394
3.488144
3.560661
3.678851
3.866302
4.003542
4.060959
4.211191




0.730
0.740
0.750
0.760
0.770
0.780
0.790
0.800
0.810
0.820
0.830
0.840
0.850
0.860
0.870
0.880
0.850
0.900
0.910
0.920
0.930
0.940
0.950
0.960
0.970
0.980
0.990
1.000
1.010
1.020
1.030
1.040
1.050
1.060
1.070
1.080
1.090
1.100
1.110
1.120
1.130
1.140
1.150
1.160

" 1.170

1.180
1.190
1.200
1.210
1.220
1.230
1.240
1.250
1.260
1.270
1.280
1.290
1.300
1.310
1.320
1,330
1.340
1.350

5.300941

4.915490

4.462694

3.960338

3.412798

2.842850

2.256176

1.679505

1.117669

0.591479

0.107829
-0.325362
-0.703480
~-1.026303
~1.288107
-1.497142
-1,655850
=1.767546
~1.839869
-1.882918
-1.901502
-1.899772
-1.890381
-1.877861
~1,866457
-1.861093
-1.867049
~1.880707
~1.907961
-1.937236
-1,976914
-2.021478
~-2.065371
-2.106021
-2.140774
-2.161213
-2.173288
-2.165415
-2.146071
=-2.109116
-2,059807
-1.994752
-1.919178
-1.835327
-1.745910
-1.656677
-1.570702
~1.484781
~1.408654
=-1.339279
-1.277167
~1.222956
-1.173344
-1.131993
-1.089466
-1.045954
-1.001394
-0.949340
-0.892804
-0.821347
-0.741740
-0.646151
-0.54125¢4

4.496467

4.701146

4,495789

3.819680

2.965487

2.349164

2,000432

1.635842

1.187165

0.819100

0.564319

0.281201
~0.053583
~0.324297
-0.521342
-0.749196
~-1.009100
-1.208304
-1.354398
-1.531832
=-1.726239
-1.861168
-1.957783
-2.085210
-2.217362
=2.292324
-2.341610
-2.420392
~2.494346
-2.515522
-2.522350
-2.556740
~2.579477
-2.555760
-2.527534
~2,524461
-2.505359
~2.447143
-2.392444
-2.360129
-2.309289
~2.226755
-2.153824
-2.100295
-2.027018
-1.928881
~1.844659
=1.776799
-1.688724
-1.581738
-1.491552
~1.414743
-1.317664
=-1.206690
-1.114349
~1.032542
-0.930583
-0.818919
-0.727010
-0.642964
-0.538906
-0.428665
-0.338876
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4.528727

4.745268

4.531584

3.829793

2,.946289

2.317832

1.971990

1.605475

1.147456

0.775175

0.523153

0.238399
-0.104108
-0.378683
-0.574454
~0.805479
-1.073821
-1.277504
-1.423762
-1.606125
-1.809954
-1.949681
~2.047384
-2.181114
-2,323117
~2.402434
-2.453027
-2.538843
-2.6222¢1
-2.646585
-2.654363
-2.695987
-2.727279
-2.705028
-2.677213
-2.681547
-2.670043
~2.611728
-2.557278
-2.533267
-2.489850
~2.406308
-2.334631
-2.292448
=-2.228523
-2.129956
-2.051133
=-2.004253
-1.934064
~1.831867
-1.767274
-1.771731
~1.782492
-1.732754
-1.629171
-1.506572
-1.378139
=-1.253332
~1.142442
~1.033542
~-0.910714
-0.787844
-0.6828¢87
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1.360
1.370
1.380
1.390
1.400
1.410
1.420
1.430
1.440
1.45¢C
1.460
1.470
1.480
1.490
1.500
1.510
1.520
1.530
1.540
1.550
1.560
1.570
1.580
1.590
1.600
1.610
1.620
1.630
1.640
1.650
1.660
1.670
1.680
1.690
1.700
1.710
1.720
1.730
1.740
1.750
1.760
1.770
1.780
1.790
1,800
1.810
1.820
1.830
1.840
1.850
1.860
1.870
1.880
1.890
1.900
1.910
1.920
1.930
1.940
1.950
1.960
1.970
1.980

~0.426064
~0.301055
~0.168339
-0.035823
0.104695
0.237799
0.367332
0.484647
0.597126
0.692532
0.781571
0.859947
0.9232879
0.995187
1.055551
1.116309
1.181357
1.251361
1.343095
1.441111
1.557706
1.694245
1.843339
2.005405
2.185416
2.370679
2.560735
2.746525
2.916111
3.073452
3.206708
3.309040
3.373470
3.398627
3.383114
3.316839
3.205293
3.044869
2.833142
2.592613
2.303109
1.991521
1.658170
1.305361
0.957284
0.610778
0.279078
~0.032145
~0.311415
~0.558779
~0.772689
~0.951250
~1.0979%41
~1,204541
~1.290164
~1,342392
~1.369620
~1,383562
~1.391595
=~1.385437
~1.376858
-1.372984
~-1.373787

~0.254430
=0.15004%
~0.042492
0.044128
0.127807
0.231507
0.335697
0.418518
0.500756
0.603329
0.703902
0.782561
0.863047
0.964523
1.061533
1,135811
1.214536
1.315421
1.409195
1.478916
1.556167
1.657583
1,748774
1.813689
1.890157
1.994319
2.084119
2.143686
2,220860
2.332511
2.423400
2.476077
2.557715
2.689892
2.788655
2,827770
2.929719
3.150998
3.290674
3.093302
2.531862
1,873926
1.43307)
1.187597
0.921487
0.604546
0.359371
0.191298
-0.002104
~0.224069
-0.393827
~0.516808
~0.664287
-0.827888
-0.946561
-1.033748
=-1.144185
~1.262092
=1.339409
~1.395425
~-1.473282
-1.552135
~1.594074
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-0.580401
-0.461617
=0.343499
~0.244776
~0.147102
-0.G31508
0.081024
0.173686
0.267246
0.379283
0.487138
0.573963
0.663914
0.773385
0.876530
0.957706
1.044577
1.152379
1.251371
1.327015
1.411466
1.519011
1.614656
1.684713
1.767725
1.877441
1.971007
2.035024
2.118327
2,235150
2,329006
2.385360
2.472930
2.609956
2.710307
2.751536
2.859467
3.084904
3.218311
3.003269
2.419261
1.745675
1.302936
1.060206
0.791057
0.470287
0.225954
0.060154
~0.134483
-0.358561
~0.527132
-0.64815¢
=0.796644
=-0.961813
-1.079222
~1.164748
-1.276220
-1.395434
~1.471423
-1.526003
~1.605004
~1.684992
~1.725501




1.990
2.000
2.010
2.020
2.030
2.040
2.050
2.060
2.070
2.080
2.090
2.100
2.110
2.120
2.130
2,140
2.150
2.160
2.170
2.180
2.190
2.200
2,210
2.220
2.230
2.240
2.250
2.260
2.270
2.280
2.290
2.300
2.310
2.320
2.330
2.340
2.350
2.360
2.370
2.380
2.390
2.400
2.410
2.420
2.430
2.440
2.450
2.460
2.470
2.480
2.490
2.500
2.510
2.520
2.530
2.540
2.550
2.560
2.570
2.580
2.590
2.600

~1,378723
-1.388200
-1.409455
~1.434915
~1.468116
-1.497193
-1.530067
-1.563129
~1.588005
-1.605111
-1.614407
-1.611845
-1.597379
-1.570827
-1.540240
=-1.492945
-1.441).86
-1.380228
-1.318419
-1.255688
-1.187466
-1.126583
-1.073125
-1.018938
-0.976863
-0.934144
-0.899574
-0.869091
-0.842774

-~0.811835

-0.781015
-0.745597
-0.705026
-0.650821
-0.596142
-0.526942
-0.447948
-0.367513
-0.271103
-0.178004
-0.073619
0.028423
0.128111
0.224486
0.318318
0.403315
0.479265
0.546875
0.609710
0.662336
0.715476
0.763727
0.811773
0.860367
0.919062
0.983261
1.064192
1.156561
1.261352
1.383782
1.514239
1.653584

~1.622507
~1.671246
~1.716079
~1.727710
~1.732179
~1.755308
~1.770888
~1.757145
~1.741491
~1.742748
~1.733845
~1.699564
~1.667681
~1.650900
~1.622135
~1.571873
~1.527465
~1.496309
~1.451953
~1.389776
~1.336162
~1.293949
~1,237741
~1.167085
~1.107094
~1.056673
~0.991729
~0.915403
~0.851337
~0.795051
~0.723874
~0.644072
~0.577760
~0.517472
~0.441996
~0.360383
~0.293233
~0.230377
~0.152039
~-0.069832
~0.002917
0.061431
0.141632
0.223572
0.289447
0.354519
0.435962
0.517072
0.581285
0.646574
0.728991
0.808966
0.871008
0.936242
1.019756
1.098520
1.157938
1.223094
1.308351
1.386109
1.442373
1.507758
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-1.752666
-1.802734
-1.848564
-1.8%86¢4
-1.862118
-1.886827
-1.903411
~1.888087
-1.871730
-1.875067
-1.867363
-1.831599
-1.799615
-1.785688
-1.758935
-1.707582
~1.664295
-1.63824¢6
-1,597253
-1.535095
-1.485539
~1.453743
-1.405459
-1.338488
=1.294459
-1.283988
-1.264609
-1.207512
-1.130548
~1.052014
-0.967828
-0.8810¢9
-0.804591
-0.731987
-0.647846
-0.560333
-0.485653
-0.414110
-0.329275
-0.242304
-0.169533
-0.098514
-0.013175
0.072640
0.143230
0.213689
0.299333
0.383632
0.451736
0.521530
0.607470
0.690081)
0.755399
0.824500
0.91102)
0.991961
1.054157
1.122714
1.210564
1.290070
1.348685
1.417113
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predicts the positions of signularities and discontinuity quite well but
fails to predict the damped sinusoid corresponding to the large error in
cross section at the cutoff frequency of the first propagating mode
TEy1.

If the open circular waveguide is shorted internally at a distance
L down the guide then each propagating mode is reflected as the same
propagating mode. For axial incidence the contribution of the TEy; mode

to the backscatter is, according to Johnson and Moffatt [41],
ES = -ef2algy 0cquel (242)
where the coupling coefficient is

f

g 8 . 2i(k+apy)Me(ay) 1 , (243)
U T - ) 10
1 Ty 1
J
11
; the radiation coefficient is
Con = +(ka)2 Me(my) 1 £
(k=ap,)  L,(k) 2 1-f% , (224)
and |
, |
ol . (225)

R A TTAY:

]
The J11 is the first (m=1) zero of the derivative of the Bessel

function, i.e,, 1.84118, i

182 |

b




SECTION 3

FINITE CIRCULAR WAVEGUIDES WITH OPEN OR SHORT REAR TERMINATIONS

The axial backscatter by the finite circular waveguide shown in
Figure 47 has been computed using a moment method program for rotation-
ally symmetric objects.* Both open and shorted rear termination of the
waveguide were used. The normalized axial radar cross sections of both
the open and shorted finite guides, a thin circular disk of radius a and
the semi-infinite open waveguide (a few points) are shown in Figure 53.
Several features should be noted. First, for guide diameters less than
the cutoff wavelength of the first propagating mode (TEyy) the radar
cross sections of the open and shorted cylinders are essentially the
same, i.,e., the rear termination is unimportant. This would élso be
true for any structure in the interior of the guide provided they are
sufficiently removed from the front of the guide (evanescent modes).

Second, the disk cross section fn this same range (P/x < 0.6) is a good

*These computations were made by Dr. W.S.C. Chang of the ElectroScience
Laboratory, Department of Electrical Engineering, The Dhio State
University, Contract No. N00014-78-C-0049,
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Figure 53. Normalized axial radar cross section of finite
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waveguide.
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approximation for the average of the finite guide cross sections.
Third, the disk cross section is a reasonahle approximation for the open
waveguide cross section in this same range.

Using computations spanning 3/x=0,01(0.01)1.20 the axial impulse
response waveforms of the open and shorted finite cylinders have been
generated using a Fou}ier synthes{s procedure, Kennaugh and Moffatt
[43]. These response waveforms are shown in Figure 54 for
respectively the open, 54a, and shorted, 54b, guides. The initial
response, impulse plus ringing (0<t/to<20), is the same for both guides
as was anticipated in the Introduction. This response is also the same
as that for the open guide in Figure 50, but for the open guide much

more resolution was obtained because computations to 3/, of 6.0 were

used. The negative impulse at the origin was removed in these and
subsequent figures. The basic scattering mechanisms of the finite
guides can be enumerated, some of which are isolated and identifiable in
the waveforms of Figure 54. Recall that both the finite and
semi-infinite guides have an infinitely thin wall thickness.

1. Specular (frequency independent) return which is a weighted
impulse at t/t,=0.

2. Rim scattering or diffraction back and forth across the front
rim. This is the ringing for 0<t/t,<20.0.

3. Singly diffracted return from the rear of the guide. This
excitation and return travels at appgoximately the free space
velocity exterior to the guide and is clearly identifiable as
the spike (bandlimited approximation of an impulse) at
t/to=20.0,
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Figure 54b, On-axis backscatter impulse response from finite

circular cylinder shorted at the rear,
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4, DNiffraction across the rear of the guide or a doubly diffracted

contribution, which is masked with other effects in Figure 54,
There are, of course, also evanescent waveguide modes for both gquides
which are unimportant for these geometries. The above four mechanisms
are identical for both guides.

5. Propagating modes are coupled into the guide structure,
reflected at the termination and then reradiated at the front
of the guide. The reflection coefficient at the rear is
obviously different for the open and shorted guides. Note,
however, that there is no mode conversion for these
terminations., In time, these mechanisms must occur later than
t/t°=20.0 because of the mode energy velocity in the guide.

6. For thevopen finite quide another scattering mechanism exists
which has two reciprocal forms. Coupling into the guide at the
front as waveguide modes, guide propagation and then
diffraction at the rear of the guide and free space propagation
in the backscatter direction. ©0bviously the reverse or
reciprocal mechanism also occurs.

A principal advantage of the time domain viewpoint is that the
above scattering mechanisms can, in principle, be separately removed
from the total response waveform. More importantly, approximate impulse
response waveforms for these and similar cavity geometries can be
constructed by simpie additjon of basic waveforms with appropriate
delays. The impulse at the waveform origins in Figure 54 and Figure
50 is simply predicted by asymptotic theory. In fact, the impulses

shown have been added artificially. The weight of this impulse, Equation
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4.

Diffraction across the rear of the guide or a doubly diffracted

contribution, which is masked with other effects in Figure 54,

There are, of course, also evanescent wavequide modes for both guides

which are unimportant for these geometries. The above four mechanisms

are identical for both guides.

5.

Propagating modes are coupled into the guide structure,
reflected at the termination and then reradiated at the front
of the guide. The reflection coefficient at the rear is
obviously different for the open and shorted guides. Note,
however, that there is no mode conversion for these
terminations. In time, these mechanisms must occur later than
t/t,=20.0 because of the mode energy velocity in the guide.

For the'open finite guide another scattering mechanism exists
which has two reciprocal forms., Coupling into the guide at the
front as waveguide modes, guide propagation and then
diffraction at the rear of the guide and free space propagation
in the backscatter direction. 0Obviously the reverse or

reciprocal mechanism also occurs.

A principal advantage of the time domain viewpoint is that the

above scattering mechanisms can, in principle, he separately removed

from the total response waveform. More importantly, approximate impulse

response waveforms for these and similar cavity geometries can be

constructed by simple addition of basic waveforms with appropriate

delays.

The impulse at the waveform origins in Figure 54 and Figure

50 is simply predicted by asymptotic theory. In fact, the impulses

shown have been added artificially. The weight of this impulse, Equation
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(237), was subtracted from the frequency domain data befare Fourier i
synthesis in order to improve details of the waveforms for short times.
In a similar fashion, the singly diffracted contribution which is
easily predicted via the geometrical theory of diffraction (GTD) as *
S -j2k1  -jkR
a e e

E =E

4 (246)
SD o7 - —

373
can be removed.

The impulse response waveforms of the finite open and shorted
guides with the specular contribution removed are shown in Figure 3-3,
It remains, in this time span, to approximate the sinusoidal delay for
0<t/t4<20.0., This type of appraximation is discussed later.

utn provide§ éxce]lent asymptotic frequency domain approximations

for the doubly diffracted contribution. Unfortunately the finite guides

have a cylindrical caustic on the gquide axis. The proper constant phase
shift correction at all frequencies for this caustic results in a
nonphysical system and consequently a noncausal response in the time
domain. Thus if this term is subtracted before synthesis a distortion
of the resulting waveform at times before this contribution can poscibly
arrive results. This is illustrated in Figure 56 for the finite

shorted guide. Comparing Figure 56 and Figure 55b it is seen that a

distortion before t/t,=20.0 has occurred and this cannot occur

*Modern Unified Theory of Diffraction (UTD), Pathak and Kouyoumjian
offers more sophisticated results but the simpler GTD formula is H

adequate here,
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Impulse response for finite open cylinder with direct

diffraction from rear removed,
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Figure 55b.

Impulse response for shorted finite cylinder

with direct diffraction from rear removed,
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physically. The asymptotic phenomenon occurring was shown in Figure 49

for a different type of response. Note carefully that in time the
doubly diffracted contribution physically begins to occur at
t/t4=20.0+e. According to the asymptotic theory it is identically zero
for t/to>22.0. It is precisely this caustic correction problem which
prevents a large number of GTD and UTD results from being fully
exploited in the time domain., The difficulty has been known for some
time, Moffatt [53], but a simple effective solution has not ensued.

For the finite shorted guide we can consider removinyg meéhanism 5,
the propagating mode contributions, by utilizing results from the
solution for the open circular waveguide with a shorting plate as shown
in Figure 57, This contribution must be the same for the two
structures. The ax5a1 backscatter, based on coupling and reradiation of
the TEy1 mode and neglecting the rim scattering was given in Equation
(242). Radar cross section calculations of the open waveguide in

Figure 57 which include the TEy; and TMj; modes and the rim j

contribution have been made, Johnson and Moffatt [41]. Unfortunately

the propagating mode contributions were not separated and the time

ER TR

waveform corresponding to Equation (242) will require some repeated
calculations. Since these involve the Wiener-Hopf factorization
functions they are not simple.

An extensive table of values of the factorization functions Li{a)
and M;(a) computed by numerical integration is found in Johnson and
Moffatt [12]. We are now interested in the case of n=1 (backscatter). §

For 0.1<0/x<0.7, the Ly and M; functions vary smoothly except at a cusp

s WES g e e

in the imaginary part of the M, function at P/r=0.5861. An interpolation
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Figure 57,

Coordinate system for scattering

circular waveguide.
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program was written to obtain values of the factorization functions at
inbetween frequencies. It avoids interpolation across the cusp which
would lead to erronedus results. The results for Li(k) and My (k) for
the n=1 case ara given in Table 4,

Based on the simplest asymptotic forms, the axial backscattered

field is given by, Johnson and Moffatt [41]

£S = -sa? + a(8+i11°) e "ol .
) C[Jllz']-] (3112"1)85 a/C (247)

The time waveform corresponding to Equation (3-2) is

2
Fo(t) = __=a  §'(t-2L) + __2a 4+j11 t-2L
1 '5'{:2'_—1' ( c (jIIZ'l) ED ul C)

(248)
The most obvious difficulty with Equation (248) is the delay--we know

that it should be slightly greater than 2l/c, The precise inversion of

j2d 2L 2_.2/.2
(-vci) -Jll/a

e =@ , (249)
. yields
21| -joL (s 2 +jll2 .
. L e Y
[J'IIC /tz-(juc)z]
-6 (o2l - 2 LT a uft-2L)
3 a il < .
722 sc)?

(250)
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TABLE 4

RESULTS FOR L4(k) AND M, (k) FOR THE n=1 CASE.

L, (k)

D/x
.100
.110
.120
.130
.140
.150
.160
.170
.180
.190
.200
.210
.220
.230
.240
.250
.260
.270
.280
.290
.300
.310
.320
.330
.340
.350
+360
.370
.380
<390
.400
.410
.420
.430
440
-450
460
-470
.480
.4920
.500
.510
.520
«530
540
«550
«560
.570
.560
.590
.600
.610
© «620
.630
«640
«650
.660
.670
6860
690
.700

Real
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Imag.

0.9595

0.9523
0.9446
0.9362
0.9273
0.9179
0.9078
0.8972
0.8861
0.8743
0.8620
0.8510
0.8398
0.8284
0.8167
0.8048
0.7927
0.7804
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0.7300
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0.4956
0.48G61
0.4768
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0.4586
0.4498
0.4411
0.4326
0.4243
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0.4083
0.4005
0.3929
0.3855
0.3783
0.3713
0.3644
0.3577
0.3512

0.1825
0.1084
0.213%
0.2287
0.2433
6.2574
0.2711
0.2843
0.2971
0.3095
0.3214
0.3324
0.342¢9
0.3528
0.3622
6.3711
0.3795
0.3873
0.3946
0.4014
0.4077
0.4139
0.4196
0.424¢
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0.4240
0.4379
0.4413
0.4443
0.4469
0.4490
0.4513
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0.4549
0.4563
0.4572
0.4579
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0.4582
0.4579
0.4572
0.4568
0.4562
0.4553
0.4543
0.4530
0.4515
0.4497
0.447¢
0.4456
0.4432
0.4410
0.4387
0.4362
0.4336
0.4308
0.4279
0.4249
0.4217
0.41¢4
0.4149

196

M, (K)

Real

0.3033

0.3020
0.3007
0.2994
0.29¢€1
0.2968
0.2954
0.2941
0.2928
0.2915
0.29¢02
0.2¢c¢84
G.2866
0.2848
0.2829
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0.2791
0.2771
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0.2712
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0.2466
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0.2521
0.2542
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0.2661
0.2659
0.2740
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0.2895
0.3196
0.3523
0.3720
0.3802
0.4C11
0.416¢E
0.4175
0.4213
0.4223
0.4200
0.4165
0.40¢¢

Imag.

1.6029
1.4605
1.3411
1.2403
1.1541
1,0796
1.0145
0.9572
0.9064
0.8611
0.£205
0.7829
0.7487
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0.688¢
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0.5942
0.5745
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0.45¢9
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0.1€65
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G.2011
0.2085
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This waveform would have to be convolved with the inverse transform of

the g9
811%en

response of the coupled and reradiated mode. The impulse term in

expression in Equation (242) to yield the true impulse

Equation (250) 'is a precursor {1lustrating that even for guided waves
the first presence of the signal (perfect detector) arrives with the
velocity of light in a vacuum. The signal front buildup is dictated by
the second term in Equation (250). For guided waves the topic of
transients was discussed by Cerilio [37]. The present case is further
complicated by the coupling and radiation expressions, which are also
frequency dependent.

The doubly diffracted contribufion in the time domain for the

finite shorted cylinder is given by (asymptotic estimate)

Do = -2 u(22ty-t) (251)
F t) = —_ 0 -7
I (®) 37"50 /§2to-t

According to this estimate the contribution endures only for t/t,<22.0
(to=3/c). The essential truth of this can be seen by comparing Figures
54b and 56. For ty/t>22.0, the response waveforms are identical.
Therefore for t/ty>22.0, the waveforms in Figures 54b, 55b and 56 are
the coupling, guide propagation and radiation of basically the TEy; and
TM11 circular waveguide modes. At the smallest wavelength calculated,
4/x=1.2, there are actually lO'TE and 6 TM modes which can propagate but
for axial backscatter, only the TEj; and TMj] modes are of any real
consequences, At other aspects or for terminations which cause mode
conversion this will no longer be true. We postulate therefore that on-

axis the backscatter contribution from coupling and radiation consists
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of a weighted doublet delayed by 2L/(energy velocity of TEjj mode) and
then damped sinusoid contributions which originate at times dictated by
the energy velocity of the higher order modes. Impulse and step
response waveforms due to the short inside the semi-infinite guide are
obtained from inversion of Equation (242) for 0.6<0/x<2.6 in steps of
D/x=0.01, as shown in Figure 60a and 60b respectively. (Recall that
below D/x= 0.5861, the cutoff frequency of TEy] mode of the circular
waveguide, there is no return from the short.) These time waveforms
agree well with our postulation,

For completeness of the canonical response waveforms, the step and
ramp response waveforms of the open and shorted finite circular
waveguides are shown in Figures 58 and 59 respectively. The smoothing
effected by integration and, for the ramp response, the emphasis on low

frequencies is very evident.
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SECTION 4
INTERNALLY LOADED OPEN CIRCULAR WAVEGUIDES

In this section, we study the effects of loading inside a semi-
infinite circular waveguide. We choose this waveguide instead of the
finite guide because we thus eliminate a myraid of diffractions from
the termination of the guide. Furthermore, the exact low frequency
Wiener-Hopf solution is available for the semi-infinite circular
waveguide. The loading is placed at a position five guide diameters
down from the opening of the guide.

In particular, we are studying the time domain on-axis impulse
response of the semi-infinite circular waveguide with or without
loading. A Fourier synthesis procedure is used to obtain the time
domain response. The frequency spectrum consists of three regions: 1)
low frequency (below cutoff) region; 2) high frequency asymptotic
region; and 3) a resonance region between the high and low frequency
regions which will be approximated by a rational function fit,

The low frequency region was calculated for D/x=0.01 to P/x=0,58 in
steps of 0.01. It is calculated using equations and data on the Wiener-

Hopf factorization functions given in the report by Johnson and Moffatt
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_________

[12]. 1t is therefore the exact Wiener-Hopf solution. Since the
cutoff wavelength for the TE1} mode of the circular waveguide occurs at
0/x=0.586, this low frequency region is identical for all cases of
loading, including the absence of loading.

The high frequency solution is computed via the methods of physical
optics for the internal load and the geometrical theory of diffraction.*
It extends to 7/x=2.60. A detailed discussion is given by Pathak and
Huang [50].

For the region between the high and Tow frequency regions, a

rational function of the form

F(jka) = 0=0 An(ika)" (252)

1+ Bm(jka)m
m=1
is used to fit points in the high and low frequency regions.

To ensure, in part, the correctness of the rational function fit,

the following checks are made.

1. Since the load is placed five diameters down from the open end
of the guide, the impulse response for 0<t/t,<20.0 (to;%) and
all cases of loading should be the same as the case of no
loading in the same time period. Furthermore, the impulse

response for 0<t/t,<20.0 should be the same as that of the

*These computations were made by Mr. C.C. Huang of the ElectroScience
Laboratory, NDepartment of Electrical Engineering, The Ohio State
University, Contract No., F196238-80-C-0056.
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finite waveguide discussed in Section 3,

2. The impulse response and step response must satisfy the moment

conditions.
[ Fi(t) dt =0 (253)
0
J Fy(t) dt =0 (254)
)

where Fy(t) and Fy(t) are the impulse and step response
respectively.

It must be understood that in the absence of experimental data it
is not possible to completely verify the calculated results.
Experimental data to verify the calculations would require either an
experimental pulse range or very broadband scattering data to isolate
the rim plus load return,

In the following sections, (4-1) to (4-5), results for the cases of
open circular waveguide, shorted open circular waveguide, non-shorting
disc in open circular waveguide and planar blade geometry in open
circular waveguide (40 blades and 2 blades) are presented. These
configurations are shown in Figure 61,

A1l the frequency data have spacings of D/x=0,01 and the following
notation is used:

Fasy(s)[D/A=0.64, 2.6] means the asymptotic frequency response for
0.64<D/3¢2,6 in steps of D/x=0,01, 1t is equivalent to
Fasy(s)[u(n/x-0.64)-u(“/x-2.61)] where u(7/)) is the discrete unit step

function.
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Figure 61. Configurations of various loadings inside semi-

infinite circular cylinder.
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4,1 Open Circular Wavequide

This is a well known geometry and will also be referred to as the

hollow cylinder from here on. Frequency data used are given by

Frotiow(s) [P/3=0.01, 2,63 = F, (s) [7/3=0.01, 0.58]

+ Frat(s) [0/x=0.59, 0.99] + Fasy(s) (O/x=1.0, 2.67 .
(255)

Flow(s) is the exact Wiener-Hopf solution given by Johnson and Moffatt

[12]. Fasy(s) (O/x=1.0, 2.6] is the asymptotic solution given by

gl '/;'-,(—a‘ 2/2— v’?ﬂ’kd R
(256)

n n
Ef_ = % 1 - e'j(Zka"I! 1 - L- e"jZka (1 + e'jT e"ij

Lastly, Frat(s)[D/A=0.59, 0.99] is the rational function fit spanning
the two solutions. Figures 62a and 62b show the magnitude and phase
respectively of Froliow(s) up to D/x=1.4. The frequency response is a
slowly varying function and the rational function fit is represented by
the solid curve in Figure 62. The impulse and step responses obtained
by inversion of Equation (255) are shown in Figures 63a and 63b
respectively. Again the negative impulse at the origin of the impulse
response curve is removed by adding an appropriate positive constant to
the frequency response. This also applies to all subsequent plots.
When Figure 63a is compared with the 0<t<20t, region of Figures 54 and

55, it 1s seen that agreement is excellent,
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4.2 Shorted Open Circular Waveguide

A short is placed 5 diameters down from the open end of the semi-
infinite guide. An exact solution for the contributions of the short is F
given by Equation (242), which we shall call Fgp(s). Therefore, the

frequency data for this geometry are constructed as follows:

Fshort ($)[0/2=0.01,2.6] = Fho11ow(s)[P/2=0.01,2.6] + Fsu(s)[P/2=0.6,2.6] .
(257)

Fhollow(s) is the same as that given by Equation (255) and Fgh(s) is added
to Fhollow(s) term by term for 0.6<D/A<2.6 . Figures 64a and 64b show
the impulse and step responses of the shorted open circular cylinder via
inversion of Equation (257). It is notable that for 0.0<t<20ty(tqo=2/c)
the impulse response is the same as that of Figure 63a while for

t/tp>20., the impulse response is the same as that of Figure 60a. This

suggests that we can deal with the cylinder and the loading separately,

thus greatly facilitating the computations,

4.3 Non-Srorting Disc in Qpen Circular Waveguide

This is a more complicated problem since the frequency response is a
rapidly varying function above cutoff of the TEj; mode of the circular
guide. There is no closed form expression for the high frequency response

and an asymptotic solution (Fqi(s)) is obtained numerically using GTD and
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the physical optic approximation for the disc.* For frequencies below

cutoff, Figw(s) in Equation (255) is used.

The frequency data used are as follows:

Fdisc(s)[0/2=0.01,2,6] = Fyou(s)[?/2=0.01,0,58] + Frat(s)[?/2=0.59,0.63]
+ Fqi(s)[P/2=0.64,2,6] (258)

The rational function fit is needed as we know that the asymptotic
solution is not satisfactory for the region immediately above cutoff., A
number of points from Fyq,(s) and F4i(s) are used as input to a program
computing the coefficients of Equation (252) by a least square error
algorithm, Thisnis a trial and error method and the "correct” solution
must satisfy both ﬁhysica] constraints and the moment conditions.
Figure 65 shows the impu]se.response of an "incorrect" frequency
solution. The waveform for 0.<t/t,<20 does not agree with the
corresponding waveform for the hollow cylinder, Figure 63a.

A satisfactory solution is given in Figure 66 and Figure 67, The
circles represent the solution for the hollow cylinder, while the
triangles represent the asymptotic solution. The solid line of Figure
66 shows how the rational function fit behaves inside and outside the
unknown region 0.59<D/A<0.63. The squares in Figure 67 represent the

rational function fit. The corresponding impulse and step responses are

*These computations are made by Mr. C.C. Huang of the ElectroScience
Laboratory, NDepartment of Electrical Engineering, The Ohio State

University under Contract No. F19628-80-C-0056.
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given in Figure 68a and 68b respectively. Again note that for
0.<t/ty<20.0 the impulse response agrees with that of the hollow
cylinder and the return from the disc starts only at t=20t,.

In general, the high frequency asymptotic frequency data is
excellent for D/x greater than 1,0, For the case of the non-shorting
disc, we have used the asymptotic solution down to D/A=0.64; Equation
(258). The reason that this is possible is that the return from the
disc is much stronger than that from the rim at these frequencies. This
is clear when we examine the region D/X>0.6 of the semi-infinite hollow
cylinder (Figure 62a) and that of the hollow cylinder loaded with a
non-shorting disc (Figure 67a).

In target iQentification, we would be interested in the structure
that is present ingide the ¢ylinder. In our present study the loadings
are always placed five diameters down the guide so that by the time
t=20ty, the ringing from the rim has died down substantially. Also in
the case of the non-shorting disc the return from the loading starting
at t=20t, is rather strong. When these two conditions are not met, that
is, if the return from the loading occurs when the ringing from the rim
has not died down enough (due to position of loading inside cylinder) or
if the return from the loading is so small that it has comparable
magnitude as the ringing from the rim at the instant, the waveform of
the return from the loading is masked. Therefore, it is of special
importance that the reflection from the loading inside the cylinder be

isolated.
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Furthermore, in the process of isolating the return waveform from

the loading, we can partly verify the correctness of the frequency
domain solution. A valid waveform would have to be zero for 0.<t/t <20,
and starts at t=20t,.

We shall first obtain the frequency spectrum for the reflection due
only to the ncn-shorting disc inside the guide which we shall call
Fdisc on]y(s). Note that below D/A=0.5861 there is no wave propagating

inside the quide and the spectrum is identically zero in this region.

F disc only(s)[0/3=0.59,2.6] =
Fdisc(s)[0/2=0.01,2.67 - Fho110w(s)(?/2=0.01,2.6] , (259)

The impulse response obtained via inversion of Equation (259) is
shown in Figure 69. When compared with Figure 68a, we see that this
is an excellent way to study the effects of loading. It can be applied

to experimental situations with other wavequide geometries and loadings.

4-4 Planar Blade Geometry in Open Circular Waveguide (40 blades)

The geometry of the loading is illustrated in Figure 61, There
are forty blades around a small circular disc positioned 5 diameters
down the guide. The frequency data are obtained in the same way as that
of the non-shorting disc case and are shown in Figure 70a and 70b.
The impuise response and the step response are shown in Figures 71la
and 71b respectively. Note that they are very similar to the solution

for the non-shorting disc (Figures 68a and 68b). This is attributed
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with a 40-blade planar geometry.
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to the highly symmetrical property of the geometry and the large
reflection area of the loading. Thus it is not very different from the
non-shorting disc particularly as we are using the physical optics

approximation for the loading.

4-5 Planar Blade Geometry in Open Circular Waveguide (2 blades)

The geometry for this case is shown in Figure 61, We shall study
the loading with the blades at 0°, 45° and 90° with respect to the
polarization of the incident electric field. The frequency spectrum for
the 0° case is shown in Figures 72a and 72b. The corresponding
impulse and step waveforms are shown in Figure 73a and 73b., 1t is

apparent that the return from the loading is not strong and is therefore

masked by the ringing from the rim. Here is an example where we would
like to isolate the return due only to loading. Following the procedure
described by Equation (259) in Section 4-3 we obtained the impulse
responses for the 0°, 45° and 90° cases as shown in Figure 74a, 74b

and 74c respectively,

The modulation effect is primarily evident in the amplitude of the
waveform, We have used frequency data up to D/x=2.6 and thus included
altogether 18 TE and TM modes. However, the TE{y is the dominant mode
and its electric field lines diagram is shown in Figure 75. Therefore
it is clear that for the 0° degree case, the return is strongest. Note
that the area of the small circular disc at the center is 0.097a2 while
the area of the two blades together is only 0.016na2. Thus the modula-
tion effect is not very dramatic since the small disc plays a leading
role,
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Figure 75, Electric field lines for TE{} mode inside circular

wavequide,




SECTION 5
COMPLEX NATURAL RESONANCES OF OPEN AND FINITE CIRCULAR WAVEGUIDES

The complex natural resonances of a scatterer offer a unique way of

identification, Moffatt [47]. They are also necessary for the make-up

of the K-pulse, Kennaugh [44], a somewhat different target recognition
tool. Although the importance of the complex natural resonances is
recognized by many researchers, the resonance locations have been
obtained only forha few simple geometries.

In this sectioﬁ, three different approaches are used to find the
complex natural resonances of the open circular waveguide; eigenanalysis
of time domain waveforms, rational function fit of frequency domain data
and complex roots of a postulated characteristic equation.

The eigenanalysis solution of min-max problems involving squared
error is described extensively in the literature, Guillemin [40]. 1t
has also been shown, Moffatt et al., [49], to be less sensitive to
noise than similar procedures, e.,q., Prony's method.

Time domain impulse response waveforms of the finite cylinder
(Figures 58a and 54b) are used in the present analysis. Since we note

that for 0.0<%/t,<20.0 (to=2/c, a=radius of circular guide, c=speed of
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light), the impulse responses are the same for the open cylinder and the
shorted cylinder, the result of eigenanalysis in this region is the same
for both cases and is shown in Figure 76. The plot is in the complex

ka (normalized s) plane and it is evident from the plot that the real
part of the extracted pole locations vary over some range. The shaded
area in the plot indicates that the pole can occur anywhere in the
region. This is a common shortcoming of the eigenanalysis methods.

The uncertainty of the real part of pole locations according to the
eigenanalysis method (including Prony's Method) is attributed to the
fact that the exact order of the system is unknown while we look for a
certain number of poles. Also it is known that the sampling interval
affects the solution, Moffatt et al., [49].

Figure 77 and 78 show results of eigenanalysis of the region
24,<t/t,<30, for the cases of a cylinder open at both ends and a
cylinder with rear end shorted respectively.

In the second method, the moment method solution for the hollow
finite guide shown in Figure 53 is used in a rational function fit,
Frequency data are for 0.02<P/x<0,56 in steps of 0.02 (D is diameter of

guide, X is wavelength). As we noted earlier, the cutoff frequency for

the TEj] mode of the circular wavequide is D/A=0.586, the frequency data
includes only the effect of the rim and diffraction at the rear via

prapagation on the outside of the cylinder.
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Thus a model represented by the rational function

F(ka) = m

=

41~

-20jka

Ap(ka)™ + e

N
X Bp(ka)n
n=9

J

1+

J

L

Cj(ka)j

1

(260)

is proposed. The coefficients Ap, By and Cj are real and are determined

through a least square error algorithm.

Then the expression in the

denominator of Equation (260) is solved to obtain the complex natural

resonances. The e-J20ka term represents the time delay of contributions

from the rear of guide.

TABLE 5.

EQUATION (5-1) AND MOMENT METHOD SOLUTION OF BELOW

Complex natural

resonances

M:N:S’ J=6 M:N:A’ J=5
-0.238 - j 1,832 -0.230 - j 1.688
Set A
-0,233 + j 1,832 -0.230 + i 1.688
~0.557 - j 1.086 -0,518 - j 1.16
Set B
-0.557 + j 1,086 -0.518 + j 1.16
We recall that the resonance locations in Figure 76 did not

include the diffraction from the rear, while the complex natural
resonances in Table 5 include both rim scattering and diffraction from

the rear of the finite guide.

CUTOFF REGION OF FINITE CIRCULAR GUIDE.

Two cases are presented here in Table 5,

COMPLEX NATURAL RESONANCES EXTRACTED USING MODEL OF
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complex natural resonances of the two results, it appears that at
frequencies below cutoff, the effect of rim scattering is strongest as
the inclusion of rear diffraction in the model of Equation (260) did not

alter the pole locations much,

When we examine the denominator of each component in the
polarization scattering matrix (Equations 226, 227, 228 and 229), we
note that all contain the factor 1-f,2. The same denominator factor is
found in the coefficients which define the waveguide modes coupled into
the guide and also appears in the radiation coupling coefficients for
waveguide modes. We postulate therefore that the characteristic

equation for the open circular waveguide is
1 - fp2 = (1+f3)(1-Fp) = 0 (261)

The factored form of Equation (261) is interesting in that it appears to
define even and odd complex natural resonances for the structure. For
axial incidence, the infinite summations in the components of the
scattering matrix reduce to the n=1 term and for axial incidence the

complex natural resonances excited are given by

(1+F1)(1-F1) =0, (262)
where
fy = L+(k) . (263)
2ka M+<k ;
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Asymptotic forms for the factorization functions (L4, M;) have been

given by Chuang et al. [11] as (e-iWtconvention)

L) =4 fy R+ RZ :
YZka 2 Ytka e-1n/4 8uka e-17/¢
(264)
and
M (k) = el g R+ R'2 ,
v2ka 2 /mka e-i7/4 8nka e-1n/¢
(265)
where
R=J (-i)m ei2mka , (266)
m=1 ‘m
and
R' = J iym ei2mka . (267)
m=1 m3
Thus the complex natural resonances are defined by
1 | 8mka - 4/7ka ei"/4 R - iR2 t 1 =0 (268)
a | gnka - A/nka ei®/4 R' - iR'2 ‘

As noted by Chuang et al. [11], the infinfte summations R and R'
converge relatively rapidly except when ka=3%/4 and a few terms are
sufficient to represent the series. However, we seek those complex

values of ka which satisfy Equation (268) and each terms in R and R'

adds additional zeros. This obviously complicates any search procedure.




A Cauchy integration program developed by Singaraju et al, [51]

has been used to search for the zeros of Equation (268). The zeros of
1-f1=0 and 1+f1=0 are searched separately and they are plotted in the
complex ka-plane in Figure 79 and Figure 80 respectively. Four terms
each are used in the summations of R and R'. The solid line is drawn to
show the cusp-like trend of the distribution of the zeros. Furthermore,
the cusps have a period of = and suggests a simple relationship of the
wavelength_with the diameter. As is expected of an asymptotic
expression, the locus of the zeros becomes more regqular as the frequency
increases. DNue to the complexity of the characteristic equation, any
solution becomes a formidable task.

The solution to Equation (268) has been attempted with different
number of terms in R and R', A particular zero appears consistently at
around -0,35+jl.1, This is similar to the pole (set B of Tahle 5)
obtained via the rational function model of the below cutoff region of
the frequency spectrum, It is also similar to the dominant pole of the
wire loop.

Nue to the approximate nature of the equations and the complexity
of the problem, the solutions are only approximate. However, it is
encouraging to note that there is good agreement between the three
methods.

The question of a characteristic equation and attendant complex
natural resonances for the open circular waveguide is not considered
settled. The topic, particularly as reexamination of the Wiener-Hopf

solution, is beyond the scope of this report. Fxact characteristic
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equations are known for only two scatterer geometrieg, spherical and
cylindrical. The vector wave equation is also separable for the
circular disc and some effort toward extraction of the characteristic
equation has been made, Mithouard and Hodge [45]. It would now appear

that the open circular waveguide can possibly also be treated.




SECTION 6
SUMMARY FOR PART II

Backscatter calcuiations for the low resonance region of loaded
cavity structures (open, loaded circular waveguides) have been obtained
by combining exact (Wiener-Hopf) solutions at low frequencies with
asymptotic estimates (GTD) at high frequencies. The spectral solutions
were joined using rational function approximations to span the critical
spectral region of the first propagating mode for the guide. A proper

\
fit for the rational function model was obtained by satisfying both
physical constraints and moments of the corresponding time domain ﬁ
estimates. The basic approach is not new, one of the earliest

utilizations of the time domain concept by Kennaugh and Moffatt [43] was *

to combine Rayleigh and physical optics estimates to predict resonance

region scattering. In this case, however, exact computations were used

at low frequencies and the proper spectral region (below the cutoff
frequency of the first propagating mode) was known a priori.
In the time domain the asymptotic estimates could not he utilized

directly, the predicted time waveforms being noncausal. It has been

demonstrated however that the noncausality of these solutions can be
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removed ~ithout altering the correctness of the asymptotic model in its

proper spectral range,

For an open, unloaded circular waveguide, asymptotic estimates
provide a reasonahle estimate of backscattering for guide diameters
greater than 1.0 wavelength and an excellent estimate for gquide
diameters greater than 2.0 wavelengths, Johnson and Moffatt [12]. It
has been demonstrated using physical constraints and moment conditions
on the time domain models that when the guide is substantually loaded,
i.e., 2 short or multiple blade load geometry, there the asymptotic
estimates can be extended to lower frequencies (guide diameters of 0.7
to 0.75 wavelengths). The reason for this is that the rim scattering
(unloaded waveguide) becomes relatively unimportant compared to the
contributions from the load. The rim still must be accounted for
howevar in the vicinity of the cutoff frequency for the first (TEjj)
propagating mode,

While the extension has not been made, the manipulations of
spectral iimited analytical solutions for the casz of a open loaded
circular waveguide have clearly demonstrated that in the low resonance
region much more realistic jet engine geometries could be handied. The
approach would be via moment method calculations of the structure at low
frequencies which will not support propagating modes within the unloaded
cavity and asymptotic estimates of the loaded cavity when only a few
propagating modes are possible, These solutions could then bhe joined
using rational function estimates to span the low resonance region of

the aperture of the cavity. As in the cases demonstrated here, both
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physical constraints and moment conditions can be applied to correct the
corresponding time waveforms.

The dominant complex natural resonances of finite and open circular
waveguides have been extracted using both time and frequency domain
methods. An argument was given illustrating that the complex natural
resonance string associated with the rim scattering (leading) is
identical for all finite circular waveguides and is independent of rear
terminations and of internal loading. This was demonstrated for the
extracted poles. The;efore we can conclude that target recognition
procedures based on the complex natural resonances of the aperture of
the jet engine intake (see Appendix D) would be independent of the jet
engine itself and would not require interrogating signals with spectral
content ahove the first cutoff frequency for the intake.

A postulated characteristic equation for the open circular
waveguide has been suggested based on the exact Wiener-Hopf solution.
First estimates of the complex natural resonances corresponding to this
éharacteristic equation have been obtained using asymptotic
approximations for the Wiener-Hopf factorization functions. While sone
rough agreement with the poles extracted via time and frequency domain
methods has been obtained, additional analysis is needed to properly
interpret the complex natural resonances predicted by the proposed

characteristic equation,
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CONCLUSIONS AND RECOMMENDATIONS

The following conclusions can be drawn from the research detailed
in this report; these are grouped below into catagories 1 and 2
corresponding to parts 1 and 2 of the report, respectively.

(1a) The dominant scattering mechanisms have been identified and
isolated in the frequency domain analysis of the problem of
electromagnetic fields backscattered from the simplified inlet
geometries of Figures 1 and 2. Junctions pertaining to these various
dominant scattering mechanisms are defined, and the scattering from
these junctions i; described in terms of appropriate "generalized"
scattering matrices. The elements of the generalized scattering
matrices alluded to above are obtained in a relatively simple form via
the uniform GTD (or UTD) ray analysis together with it's modifications
which are required along ray caustics. The multiple scattering method
(MSM) has been employed, in a self consistent fashion, to sum all the
interactions between the scattering junctions. As noted above, the
scattering junctions are characterized by the generalized scattering
matrices whose elements are obtained via the ray method (see (1b))
together with it's modifications at ray caustics. The accuracy of the
elements of the generalized scattering matrices has been estahlished by
comparison with the exact (but far more complicated) Wiener Hopf

solution for these elements, and also by comparison with available

256




>

measurements in some cases. Consequently, it is concluded that the
solution to the complete problem of the electromagnetic backscatter from
the simple inlet model of Figures 1 and 2, which can be “"built-up" from
the use of the generalized scattering matrices via the self consistent
MSM based procedure, is also expected to be reasonably accurate.

(1b) The modulation of the backscattered electric field due to the
blade rotation is also predicted for the simple inlet model in Figures 1
and 2. It is concluded, that this modulation can be significant in some
cases for the simple inlet model chosen in the present work,

(2a) The diagnostic and interpretation potential of the canonical
(impulse, step, and ramp) response waveforms of cavity and loaded
cavity-type structures have been vividly demonstrated., For a finite
circular waveguidé %or example all of the scattering meshanisms have
been recognized and in many cases resolved in the time domain.

2(b) It has been conclusively demonstrated that scattering data for
cavity structures in the resonance region (cavity circumference of the
wavelength) of the cavity aperture can be ohtained by properly combining
low frequency calculations and high frequency asymptotic estimates. The
approach is particularly attractive because it provides a means to
combine low frequency data where the only fields in the cavity are
evanescent modes with solutions provided for example by the geometrical
theory of diffraction. Computations at the low frequency end are
inevitably simpler if propagating modes in the structure need not be

considered.
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2(c) It has been shown that the non-causal response waveforms

predicted by certain asymptotic results for finite and semi-infinite
guides can be corrected without altering their correct form at high
frequencies.

2(d) A definite procedure using rational functions to join the low
frequency calculations and high frequency asymptotic results was
established for the case of locaded and unloaded semi-infinite circular
waveguides. The rational functions are simple in form and both physical
constraints and moment conditions on the time response waveforms have
been given to assure the relative correctness of the rational
functions,

2(e}) A form\for the characteristic equation for a semi-infinite
circular waveguide has been postulated, and some initial estimates of
the complex natural resonances made based on asymptotic formulas. The
postulated characteristic equation came from an examination of the
elements of the polarization scattering matrix for the exact Wiener-Hopf
solution, and also from an examination of the coefficients for the modes
coupled into the guide.

The following recommendations are made for future studies on the
subject of electromagnetic backscatter from inlet geometries,

1(a) It is recommended that the present frequency domain analysis
be extended to treat non-circular inlet rim shapes.

1(b) It would be worth analyzing the effect of a hub structure in
front of the blades in the simple inlet geometries of Figqures 1 and 2,

It would also be worthwhile to consider more realistic blade structures
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(e-9., those which include a pitch on the blades) in the inlet
geometries of Figures 1 and 2.

1(c) It is recommended that the present analysis be extended to
treat higher frequencies where a large number of modes can be excited
within the inlet duct. Alternative representations for the high
frequency fields within the duct regions should be sought because the

use of a large number of modes, or a large number of equivalent rays,

would lead to a very cumbersome solution, Also, it is recommended that
the effect of tapers or transitions in the inlet duct shapes be studied
since actual jet inlets do not maintain a constant cross-section within
the duct regions.

2(a) It is recommended that the rational function procedure for

obtaining resonance region scattering data be extended to finite cavity

structures more closely modelling actual jet engine configurations. 1In

e e e e

this case one would be combining low frequency electric field integral
equation calculations with high frequency asymptotic estimates.

2(b) The initial research on the characteristic equation and the
related complex natural resonances of a semi-infinite circular waveguide

should be completed. ‘

A1l of these recommended problems in 1(a)-2(b) are very difficult

and challenging, but are certainly important.




APPENDIX A
SUMMARY OF CIRCULAR WAVEGUINE MODES %
AND CUTOFF ka 5
NO. N M ka NO. N M ka i
1 TE 1 1 1,812 41 T™ 8 1 12,2251 ;
2 ™M 0 1 2.4089 42 TM 5 2 12,3386 ;
3 TE 2 1 3,042 43 TE 4 3 12,6819 ;
4 ™ 1 1 93,8318 4 TE 11 1 12.8264 !
5 TE 0 1 3,838 45 TE 7 2 12.9324 f
6 TE 3 1 4,2012 46 TM 3 3 13.0152 é
7 TM 2 1 5.1357 47 TE 2 4 13,1704
8 TE 4 1 53175 48 TM 1 4 13.3237 :
9 TE 1 2 5.3315 49 TE 0 4 13,3237 ?
10 ™M 0 2 55201 50 M 9 1 13,3543 ;
11 ™ 3 1 6.3802 51 TM 6 2 13,5893 ;
12 TE 5 1 6,415 52 TE 12 1 13,8787 g
13 TE 2 2 6.7062 53 TE 5 3 13,9872 |
14 ™M 1 2 7.0156 54 TE 8 2 14,1155 i
15 TE 0 2 7.015 55 TM 4 3 14,3726 ;
16 TE 6 1 7.5013 5 T 10 1 14,4755 §
17 ™M 4 1 7.,5884 57 TE 3 4 14,5859 ;
18 TE 3 2 8.0153 5 TM 2 4 14,7960 ;
19 ™ 2 2 84173 5 TM 7 2 14,813 !
20 TE 1 3 8,533 60 TE 1 & 14.8636 ?
21 TE 7 1 85777 61 TE 13 1 14,9283 i
22 T 0 3 8.6537 62 TM 0 5 14.9309 %
23 TM 5 1 87715 63 TE 6 3 15,2682
28 TE 4 29,2824 64 TE 9 2 15,2867
25 TE 8 1 9.6474 65 TM 11 1 15.5899
26 TM 3 2 9.7610 66 TM 5 3 15.7002 i
27 ™M 6 1 9,931 67 TE 4 4 15,9641 :
28 TE 2 3 9,995 68 TE 14 1 15,9753 ;
29 ™M 1 3 10.1735 69 TM 8 2 16,0378 |
30 TE 0 3 10,1735 70 ™M 3 4 16,2235 ;
31 TE 5 2 10,5199 71 TE 2 5 16,3475 §
32 TE 9 1 10,7114 72 TE 10 2 16.4479 - g
33 TM 4 2 11.0647 73 TM 1 5 16,4706 :
34 ™ 7 1 11.0864 74 TE 0 5 16,4706 f
3 TE 3 3 11,3459 75 TE 7 3 16,5294 3
3 TM 2 3 11.6199 76 T 12 1 16,6983 ;
37 TE 1 4 11.7060 77 T 6 3 17,0038
38 TE 6 2 11.7389 78 TE 15 1 17.0202 f
39 TE 10 1 11.7708 79 ™ 9 2 17,2412
40 TM 0 4 11,7915 80 TE 5 4 17,3129
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ka
17.6003
17.6160
17.7740
17.7888
17.8014
17.9598
18,0155
18.0632
18.0711
18.2876
18,4335
18.6375
18.7451
18.9000
18.9801
19.0046
19.1044
19,1960
19,4094
19.5129
19,5545
19.6159
19.6159
19,6160
19.8832
19,9419
19,9944
20,1440
20,2230
20,3208
20.5755
20,7899
20,8071
20,8269
20,9725
21.0154
21,0852
21,1170
21.1644
21,1822

NO.
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
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ka
21.2116
21,2291
21,4309
21.6415
21,9317
21.9563
22.0470
22.1422
22.1725
22.2178
22.2190
22.4010
22.5014
22.5827
22,6293
22.6716
22.7601
22.7601
22,9452
23.1158
23,2548
23.2568
23.2643
23.2681
23,2759
23.5861
23,7607
23.8036
23.8194
24,0190
24,1449
24,2339
24,2692
24,2701
24,7893
24,3113
24,3383
24,3525
24,3819
24.4949




NO. N M ka NO.
161 TE 8 5 24,5872 201
162 ™ 7 5 24,9349 202
163 TE 14 3 25,0020 203
164 TE 11 4 25,0085 204
165 TE 6 6 25.1839 205
166 TE 23 1 25.3228 206
167 ™ 16 2 25.4170 207
168 ™ 20 1 25.4172 208
169 ™ 5 6 25.4304 209
170 TE 18 2 25.4956 210
171 ™ 10 4 25,5095 211
172 T& 4 7 25,5898 212
173 ™ 13 3 25,7051 213
174 ™ 3 7 25,7482 214
176 TE 2 8 25,8260 215
176 7€ 9 5 25.8913 216
177 ™M 1 8 25,9037 217
178 TE 0 8 25,9037 218
179 TE 15 3 26,1778 219
180 TE 12 4 26.2460 220
181 ™ 8 5 26.2668 221
182 TE 24 1 26.3555 222
183 ™ 21 1 26.4937 223
184 TE 7 6 26,5450 224
185 TM 17 2 26.5598 225
186 TE 19 2 26.6055 226
187 ™ 11 4 26,7733 227
188 ™M 6 6 26,8202 228
189 ™ 14 3 26.9074 229
190 1€ 5 7 27.0103 230
191 TE 10 5 27,1820 231
192 ™ 4 7 27,1991 232
193 TE 3 8 27,3101 233
194 TE 16 3 27.3474 234
196 7€ 25 1 27.3871 235
19¢ ™ 2 8 27.4206 236
197 78 1 9 27.4571 237
198 TE 13 4 27,4743 238
199 ™ 0 9 27.4935 239
200 TM 22 1 27.5680 240
262
idiny — i

WO DDONNNNDBDANN=WAFRPWLWANRODODOIOITNNOEAL,NWOAR,NOWPRAINDNDNOM X

ka
27.5838
27.6979
27.7121
27.8893
28,0267
28.1024
28,1912
28.4098
28,4180
28.4609
28.5114
28.6266
28.6402
28.6943
28.7678
28,8156
28.8317
28.8874
28.9084
28,9777
29,0468
29,0468
29,2186
29,2706
29,2909
29.4481
29,5457
29,6701
29.7105
29,7290
29.7908
29.9066
29.9161
29,9616
30.0337
30.1791
30.2029
30.3710

30,2703

30.4733




NO. N M ka NO. N M ka
241 TE 28 1 30.4774 281 TM 16 4 32,9537
242 T 14 4 30,5060 282 TE 7 8 33.0152
243 TE 10 6 30,5345 283 TE 21 3 33,1192
24 ™M 2 9 30,5692 284 TE 12 6 33,1315
245 TE 1 10 30,6019 285 TE 25 2 33,2023
246 ™ 0 10 30.6346 28 T 6 8 33.2330
247 ™ 25 1 30,7790 287 TM 23 2 33,3302
248 TE 19 3 30.8241 288 TE 5 9 33,3854
249 ™M 9 6 30,8854 289 TE 15 5 33,4785
250 TE 13 5 30,9874 290 TE 18 4 33,5039
251 TE 23 2 31.0140 291 T 11 6 33.5264
252 ™M 21 2 31,0878 292 T™M 4 9 33,5371
253 TE 16 4 31,1119 293 TE 31 1 33,5616
254 TE 8 7 31,1563 294 TE 3 10 33,6270
256 ™M 7 7 31,4228 295 TM 2 10 33,71A5
256 ™M 12 5 31,4600 296 TE 1 11 33,7462
257 TE 29 1 31.5062 297 ™ O 11 33,7758
258 TE 6 8 31,6179 298 TE 10 7 33.8420
259 ™ 18 3 31,6501 299 T™ 28 1 33,9749
260 ™ 15 4 31,7334 300 TM 20 3 33,9887
261 ™M &5 8 31.8117 301 ™ 14 S5 33,9932
262 TE 11 6 31,8384 302 ™ 9 7 34,1544
263 ™M 26 1 31.8459 303 TM 17 4 34,1673
264 TE 4 9 31,9385 304 TE 22 3 34,2608
265 TE 20 3 31,9737 305 TE 2?26 2 34,2930
266 ™M 3 9 32,0649 306 TE 8 8 34,3966
267 TE 24 2 32,1093 307 TE 13 6 34,4146
268 TE 2 10 32,1273 308 T 24 2 34,4468 g
269 ™M 1 10 32,1897 309 TE 32 1 34,5884 ‘
270 TE 0 10 32,1897 310 ™ 7 8 34,6371
271 ™ 22 2 32.2106 311 TE 19 4 34,6915
272 ™ 10 6 32,2119 312 TE 16 S5 34,7128
273 TE 14 5 32,2370 313 TE 6 9 34,8134
274 TE 17 4 32,3109 314 T™™ 12 6 34,8300
27 TE 9 7 32,5052 315 ™M S5 9 34,9888
276 TE 30 1 32.5341 316 ™ 29 1 35,0373
277 ™ 13 5 32,7311 317 TE 4 10 35,1039
278 ™ 8 7 32,7958 318 T 21 3 35,1511
279 ™M 19 3 32,8218 319 TE 11 7  35.16h7
280 T 27 1 32.9112 320 TM 3 10 35,2187
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APPENDIX B

INCLUSION OF ALL MULTIPLE INTERACTIONS
ACROSS THE APERTURE

As shown in Figure 16, the incident plane wave field, after double
i
diffraction, gives rise to a non-ray optical field E3 on the rim, which

was described by Eqs. (91) and (94).

2 . (A-1)
i I B
where £3.1 and E3 2 are the two ray optical components given in
Eqs. (95)-(96). Now, the triply diffracted ray which traverses the
=1 _bsé
aperture to produce B4 (and therefore E ) lies again on the
i
reflection boundary of the doubly diffracted ray (which produces E3 and
s3
therefore Eb ). Accordingly, one can decompose the non-ray optical
i
Es into four ray optical components as follows.
i il i2 il i2
By =Ta,1 +F4,0 +TE4,2 +Ha,2 (A-2)

=i i
due to E3 1 due to B3 2
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il i2 _i
Here, E;,l and E4 1 are the two ray optical fields scattered by E3 );
il _i2 _ i2
Ea,2 and Eq 2 are the two ray optical fields scattered hy E3 ».
il i2
Proceeding the same as in Eqs. (95)-(96), one can write B4 , a,1,

=il —i2
E4,2 » and Eg 2

as
. v _il _i i -j2ka (A-3)
k fa,0 = 83,07 0 fomremay © ’ )
A
_i2 i | rr -j2ka
Eg =g 3 (1) Al F2 e , (A-4)
L ’ 2 3 (ef+2a)(of+2a)
i i i -j2ka
: = . . P ’ (A-S)
| Ea,2 =E3,2° 0 / Tlovay ¢
2 o5 of -j2ka (A-6) ;
Eg p = (-1) - e ’ ) f
4,2 " 73,2 (95+2a)(p£+2a) ;
, !
” where *
. i
i _ -7y i
of - . (A-7) :
S 2/27k
]
and
v o f=2a ; opt= f<4
i p==-a ; pl‘"a ’ pz' a 93-"3 ’ 94- a . (A-B)

\
Thus, B4 can be rewritten as

i i i i

- A-9
By =Bg1tEg %83 (A-9)
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| il i2
= +.E
f@,1 4,1 4,1
i i .
=~ L] . L 1 _J2ka L]
By e D5 ] 0 e
- i2
3 =T
4,2 4,1
"y t3,1 VT J 7
i i2
E _=FE
4,3 4,2

i ,
17 _ . . 2 -j2ka
-%ELZ(I) j /; e

Proceeding the same, one is able to obtain

i m=1 4

where
i i i .
T =2 e L) [ 1 -JZka
w1 “ 1 Pt g
i -j(2ka-Tx
=E 1 . e 3 a'I)
m- 4/wka
i
= Em-l A
and
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(A-11)

(A-12)

(A-13)

(A-18)




L.
b

1 Y . 4. [T .-ika
Enun = 7 Enetynag (B2 0 ‘/ﬂﬁl €

1
= n-l o 3 - _
Em-l,n-l - B , 2<n<m1 , (A-15)

E with
é ' j(2a-1)
E - da-
z R SR (A-16)
lé . 4/ wka
;i
‘ g = -1 g~d2ka | (A-17)

=

= _d i
From Eqs. (107)-(108), one can try to sumup ) F, in terms of E2 to

m=2
obtain a multiplication factor F, then | Tbsm is just the product of
m=2
TDS2 and . Now,
g | o m-l i
1 e =1 E
m=2 M m=2 n=1 M,N
® m-1 ® i
! =1 I © +na. ] + T
i ! m=3 n=2 M,N m=3 m-1 2
{
» . o m_l 1 0 1. 'i
J =jg . I VT n +A. J T +F .
m=2 n=1 M0 V 7+ m=2 m 2
; (A-18)
1
;¥ Thus,
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i © ml i
; 1-A) T =38 . 1 F . n +F . (A-19)
; ( mZZ m mZZ n=l M,n w2

Proceeding the same for K times, one can obtain

K zl ©

A R T
[1-a - L (38) /?] LoE
K = m=1 4 K 2-1 i
= 3 - .E- . . 1 . T .
(38) m-§2 n=21 m,n \/n:K ¥ [zzl (38) \/;] EZ

(A-20)

However, |B|<1. In the Timiting case where K + =, the first term on

¢ et R e AN S b N

the right hand side of Eq. (A-20) can be neglected. Thus, Eq. (A-20) is

i reduced to é
% d i i ~ '
I E =E -f . (A-21) j
' m=2 m 2
: i
¥
i {
: where §
; i
; = C 3 (A-ZZ)
¢ I-AC ! !
and
K l-l -
C= I (jB) Jl , K+ (A-23)
=1 2

From E£qs. (107)-(108), one can write
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7P (e=0). 5% (60 . 7 (A-24)
m=2

Combining Eqs. (87) and (A-24), one has

El .E_bsm (8=0) = FbSI (e=0) - {l+u2-;} . (A-25)
m=

y

!
¢
i
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APPENDIX C

TO DETERMINE [S21] FROM [S12] USING
THE RECIPROCITY THEOREM

As shown in Figure 26, one wants to find the coupled fields inside
the waveguide due to an electric source Jo in the far field. Let the

electric and magnetic test sources Js, Ms be located at z=-L, then,

— -~ _+
\JS =N X Hn
at z = -L . (A-26)
— -+ -
MS = En X n

_t .
En and Hp represent the incident modal fields in the waveguide, and

e-j BnZ

m|
>
1}
()
>
—
l1°]
3
+
N
3
S

[}

1
—
.

at z (A-27)

N -j an
n * th] €

x|
"

~
= |

where e, (or h,) is the transverse electric (or magnetic) field, and
- _ +
ezn (or hzn) is the longitudinal electric (or magnetic) field. Cp can
+ +

be either Agy or Bpn to denote the TE or TM case. The test sources
- - . - . . .
Js and Mg will generate E , and H in the far field which are

£
assumed to be known (see Eqs. (131)-(133)). Now, iet Jo generate T

e
and H  internal and external to the quide. From reciprocity, one

obtains
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[ ExT - xW]ends = ([T F av .
v

L+S+S,
(A-28)
However,
- r A e
nxEt =0; nxF =0 . (A-29)
on S on S

_r r e
Also, (E , H ) and (E'e , H) satisfy the radiation conditions on t.

Therefore, Eq. (A-28) can be reduced to
~e
- J[H - W ds“+.fft‘e-35 dS=15'eoFr('R'p) . (A-30)
So So

if Jo = pe *8(|R-Rp|), a point source in the far field. Rp is the

position vector from the reference point to point P. Alsa, we let

m]
1]
™~
p-J
]
—
D
]
[
~—
®
o
.

(A-31)

x|
"
™
>
1
-
1
>
1
Sas®
I
°
.

in the waveguide region at z=-L. Again, AB can be either A;m or R~

nm
to denote the TE or TM case. Substituting Eqs. (A-26)-(A-27), and
(A-31) into (A-30), one obtains
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J(Bp-Bn)z .
AR G - Eap)] % [cn (¢ Fgmd] & P "}« £ ds
So p p
J(8p-8p)z -
+f {len (Bn +Tgn)] x [£ A= (Fp + Fgp)l e © "}« zds
So p p
=P - E () . (a-32)

Using the orthogonality property of the waveguide modes, one obtains

+ _ -
po T (Rp) =-2cy A~ [[ Ty xPp-2dS . (A-33)
e " So
Therefore,
hry r
A = Pa » E (Rp) . (A-34)
n — — o~
2ct [[e xh, +2ds
SO

i ~ ~
In crder to produce an incident field T = 6Eg + ¢E¢ at the opening

of the waveqguide, one can let




+ + +
Replacing A; with A;m or B; » and ¢, with Ay or Bpn , one obtains
m

c ear .
A- . (b + ¢E3).ETg (Rp) . Rp . IRP 4,

nm — — * . [ ] (A"37)
+ ] ] - o
2 Ar I/ em X Moy = 2 dS Juu
s
0
; " Ay P kR

g~ = (%o + ¢E4).Erw (Rp) . Rp . &3P 4o | (A-38)
nm

+ B xR e 5 j
2 82 g[ €am X Mom * 2 dS Juwy

t. o
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APPENDIX D

RADAR RECOGNITION OF CAVITY STRUCTURES

It was demonstrated in Part Il of this report that a set of complex
natural resonances could be associated with the rim or aperture of the
cavity. These resonances are independent of any loading (engine) or
external termination., The rim or aperture scattering is most dominant
at frequencies just helow the cutoff frequency of the first propagating
mode. The on-axis radar cross section of the rim (for a circular
waveguide) just below cutoff is some 9db greater than its nominal value
at higher frequencies and is roughly equal to the average cross sections
obtained when a short circuit terminates the gquide. A target
re;ognition algorithm based on the most dominant aperture natural
resonance {oscillatory part = 0.35 guide diameters in wavelengths) would
not require penetration of the cavity. If the spectrum of the interro-
gating radar signal lies below the cutoff frequency for the first
propagating mode for the cavity then direct exploitation of the two
(possibly) complex natural resonances excited does not appear too
promising, The amplitude only approach using synthetically generated

matched-filter response waveforms, Moffatt, Rhoads [48] would be one
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possibility. Another possibility which should be tested is the Tow
frequency classification scheme discussed by Ksienski and Lin in
Moffatt, Young, Ksfenski, Lin and Rhoads [49].

If somewhat more sophisticated interrogating signals are considered
then two procedures can be suggested; prediction-correlation Chuang,
Moffatt [38] and the K-pulse, Kennaugh [44] both of which would be
based on the aperture complex natural resonances of the cavity or a
combination of these and the load resonances (see below). The K-pulse
seems particularly attractive in that very distinctive waveforms should
result. Briefly, the K-pulse relates a single excitation invariant
interrogating waveform to a unique family of excitation-dependent
(aspect and polarization) response waveforms. The integrating K-pulse
spectrum has; as z;ras. the complex natural resonances of the scatterer
and is defined to elicit a response waveform of minimum duration,
Kennaugh [44].

Consider the solution for the backscattered field from a loaded
open circular waveguide using the generalized scattering matrix

technique (GSMT), Johnson, Moffatt [12]. The scattered field is given

by

ubs = S11 + S12 [(Tp2SpTan)-1 - S221-1 sp1 ) uwt
(A-39)

where S31, S312, S21 and Sp2 are matrices representing respectively the

rim scattering, radiation characteristics of the rim, coupling

characteristics of the rim and reflection of waveguide modes at the open
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(rim) end of the guide and ul is the incident field. Tpp and Tpp are

diagonal matrices representing respectively transmission down the guide
(rim to load) and transmission back from the load (load to rim). Sp is
a matrix for ihe reflection of waveguide modes from the load. The
matrices Sii, S12, S21 and S22 have been found using the exact
Wiener-Hopf solution, Johnson, Moffatt [12]. Based on these matrices,

Part II of this report suggests the characteristic equation

[1 - £,2) = [1 + f,I[1 - fp) = 0. (A-40)
for the aperture or rim complex natural resonances. The point is that
each element in the matrices Sy1, S12, S21 and S22 has (1 - fnz) as a

multiplication factor in the denominator. If we write these matrices

as
Sig._ Sy (a-21)
(1 - fn<]
then
bs ( S 512 b S ] j
s - . (T..5.T, )7t - sio¢oul
(A-42)
or
bs 1 51y 2, 512 1 S - i
1-¢2] + T.5.T. )} - s | u
i (1-f, (To2SuT2p) T 21
(A-43)
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Equations (A-42) and (A-43) illustrate on important point which it is
felt will be true for all cavity structures. The K-pulse spectrum
desired is the square of the aperture pole spectrum as zeros. Such a
spectrum sti11 does not contain the poles of the load, t.e., the poles
affected by (Th2SpT2p)-1. A K-pulse which included these would
apparently be quite long. An excitation with the square of the aperture
pole spectrum as zeros however would result in response waveforms very
highly characteristics of the load. From Equation (A-42) it is clear
that a K-pulse with the zeros of l-fn2 alone would not eliminate ringing
in the response due to the rim.

The discussion at this time is somewhat academic since, as
discussed in Sectign 5, of Part 11, we have not yet been completely
successful in extracfing the zeros of l-fnz. However, development of
the K-pulse concept is in its infancy. The K-pulse waveforms for a few
representative scatterers including the sphere, circular disk and
circular loop are presently being studied on other programs*, We
envision however that applications of the K-pulse concept will grow in
much the same way as those of the impulse response concept, Kennaugh,
Cosgriff [42] and complex natural resonances for target

identification, Moffatt, Mains [47].

*Contract No. 710816, etc,
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